Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Austr...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2017-09-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fpls.2017.01463/full |
id |
doaj-9d8ca678a81c414ea8351b85b1e242cf |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Parwinder Kaur Parwinder Kaur Parwinder Kaur Parwinder Kaur Rudi Appels Philipp E. Bayer Gabriel Keeble-Gagnere Jiankang Wang Hideki Hirakawa Kenta Shirasawa Philip Vercoe Philip Vercoe Katia Stefanova Katia Stefanova Zoey Durmic Zoey Durmic Phillip Nichols Phillip Nichols Clinton Revell Clinton Revell Sachiko N. Isobe David Edwards David Edwards William Erskine William Erskine William Erskine |
spellingShingle |
Parwinder Kaur Parwinder Kaur Parwinder Kaur Parwinder Kaur Rudi Appels Philipp E. Bayer Gabriel Keeble-Gagnere Jiankang Wang Hideki Hirakawa Kenta Shirasawa Philip Vercoe Philip Vercoe Katia Stefanova Katia Stefanova Zoey Durmic Zoey Durmic Phillip Nichols Phillip Nichols Clinton Revell Clinton Revell Sachiko N. Isobe David Edwards David Edwards William Erskine William Erskine William Erskine Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation Frontiers in Plant Science greenhouse gas emissions ruminant enteric methanogenesis genetic and genomic analyses forage crops natural variation selecting haplotypes |
author_facet |
Parwinder Kaur Parwinder Kaur Parwinder Kaur Parwinder Kaur Rudi Appels Philipp E. Bayer Gabriel Keeble-Gagnere Jiankang Wang Hideki Hirakawa Kenta Shirasawa Philip Vercoe Philip Vercoe Katia Stefanova Katia Stefanova Zoey Durmic Zoey Durmic Phillip Nichols Phillip Nichols Clinton Revell Clinton Revell Sachiko N. Isobe David Edwards David Edwards William Erskine William Erskine William Erskine |
author_sort |
Parwinder Kaur |
title |
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation |
title_short |
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation |
title_full |
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation |
title_fullStr |
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation |
title_full_unstemmed |
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation |
title_sort |
climate clever clovers: new paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilizing haplotype variation |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Plant Science |
issn |
1664-462X |
publishDate |
2017-09-01 |
description |
Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production. |
topic |
greenhouse gas emissions ruminant enteric methanogenesis genetic and genomic analyses forage crops natural variation selecting haplotypes |
url |
http://journal.frontiersin.org/article/10.3389/fpls.2017.01463/full |
work_keys_str_mv |
AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT rudiappels climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT philippebayer climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT gabrielkeeblegagnere climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT jiankangwang climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT hidekihirakawa climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT kentashirasawa climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT philipvercoe climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT philipvercoe climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT katiastefanova climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT katiastefanova climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT zoeydurmic climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT zoeydurmic climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT phillipnichols climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT phillipnichols climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT clintonrevell climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT clintonrevell climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT sachikonisobe climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT davidedwards climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT davidedwards climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT williamerskine climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT williamerskine climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation AT williamerskine climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation |
_version_ |
1725680853574483968 |
spelling |
doaj-9d8ca678a81c414ea8351b85b1e242cf2020-11-24T22:47:52ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2017-09-01810.3389/fpls.2017.01463288857Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype VariationParwinder Kaur0Parwinder Kaur1Parwinder Kaur2Parwinder Kaur3Rudi Appels4Philipp E. Bayer5Gabriel Keeble-Gagnere6Jiankang Wang7Hideki Hirakawa8Kenta Shirasawa9Philip Vercoe10Philip Vercoe11Katia Stefanova12Katia Stefanova13Zoey Durmic14Zoey Durmic15Phillip Nichols16Phillip Nichols17Clinton Revell18Clinton Revell19Sachiko N. Isobe20David Edwards21David Edwards22William Erskine23William Erskine24William Erskine25Centre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaCentre for Personalised Medicine for Children, Telethon Kids Institute, SubiacoWA, AustraliaMurdoch University, PerthWA, AustraliaSchool of Biological Sciences, The University of Western Australia, CrawleyWA, AustraliaMurdoch University, PerthWA, AustraliaInstitute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, ChinaKazusa DNA Research InstituteKisarazu, JapanKazusa DNA Research InstituteKisarazu, JapanSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaDepartment of Agriculture and Food Western Australia, South PerthWA, AustraliaSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaCentre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaDepartment of Agriculture and Food Western Australia, South PerthWA, AustraliaCentre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaDepartment of Agriculture and Food Western Australia, South PerthWA, AustraliaKazusa DNA Research InstituteKisarazu, JapanInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaSchool of Biological Sciences, The University of Western Australia, CrawleyWA, AustraliaCentre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaMitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production.http://journal.frontiersin.org/article/10.3389/fpls.2017.01463/fullgreenhouse gas emissionsruminant enteric methanogenesisgenetic and genomic analysesforage cropsnatural variationselecting haplotypes |