Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Austr...

Full description

Bibliographic Details
Main Authors: Parwinder Kaur, Rudi Appels, Philipp E. Bayer, Gabriel Keeble-Gagnere, Jiankang Wang, Hideki Hirakawa, Kenta Shirasawa, Philip Vercoe, Katia Stefanova, Zoey Durmic, Phillip Nichols, Clinton Revell, Sachiko N. Isobe, David Edwards, William Erskine
Format: Article
Language:English
Published: Frontiers Media S.A. 2017-09-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fpls.2017.01463/full
id doaj-9d8ca678a81c414ea8351b85b1e242cf
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Parwinder Kaur
Parwinder Kaur
Parwinder Kaur
Parwinder Kaur
Rudi Appels
Philipp E. Bayer
Gabriel Keeble-Gagnere
Jiankang Wang
Hideki Hirakawa
Kenta Shirasawa
Philip Vercoe
Philip Vercoe
Katia Stefanova
Katia Stefanova
Zoey Durmic
Zoey Durmic
Phillip Nichols
Phillip Nichols
Clinton Revell
Clinton Revell
Sachiko N. Isobe
David Edwards
David Edwards
William Erskine
William Erskine
William Erskine
spellingShingle Parwinder Kaur
Parwinder Kaur
Parwinder Kaur
Parwinder Kaur
Rudi Appels
Philipp E. Bayer
Gabriel Keeble-Gagnere
Jiankang Wang
Hideki Hirakawa
Kenta Shirasawa
Philip Vercoe
Philip Vercoe
Katia Stefanova
Katia Stefanova
Zoey Durmic
Zoey Durmic
Phillip Nichols
Phillip Nichols
Clinton Revell
Clinton Revell
Sachiko N. Isobe
David Edwards
David Edwards
William Erskine
William Erskine
William Erskine
Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
Frontiers in Plant Science
greenhouse gas emissions
ruminant enteric methanogenesis
genetic and genomic analyses
forage crops
natural variation
selecting haplotypes
author_facet Parwinder Kaur
Parwinder Kaur
Parwinder Kaur
Parwinder Kaur
Rudi Appels
Philipp E. Bayer
Gabriel Keeble-Gagnere
Jiankang Wang
Hideki Hirakawa
Kenta Shirasawa
Philip Vercoe
Philip Vercoe
Katia Stefanova
Katia Stefanova
Zoey Durmic
Zoey Durmic
Phillip Nichols
Phillip Nichols
Clinton Revell
Clinton Revell
Sachiko N. Isobe
David Edwards
David Edwards
William Erskine
William Erskine
William Erskine
author_sort Parwinder Kaur
title Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
title_short Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
title_full Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
title_fullStr Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
title_full_unstemmed Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation
title_sort climate clever clovers: new paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilizing haplotype variation
publisher Frontiers Media S.A.
series Frontiers in Plant Science
issn 1664-462X
publishDate 2017-09-01
description Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production.
topic greenhouse gas emissions
ruminant enteric methanogenesis
genetic and genomic analyses
forage crops
natural variation
selecting haplotypes
url http://journal.frontiersin.org/article/10.3389/fpls.2017.01463/full
work_keys_str_mv AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT parwinderkaur climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT rudiappels climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT philippebayer climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT gabrielkeeblegagnere climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT jiankangwang climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT hidekihirakawa climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT kentashirasawa climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT philipvercoe climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT philipvercoe climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT katiastefanova climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT katiastefanova climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT zoeydurmic climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT zoeydurmic climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT phillipnichols climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT phillipnichols climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT clintonrevell climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT clintonrevell climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT sachikonisobe climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT davidedwards climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT davidedwards climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT williamerskine climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT williamerskine climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
AT williamerskine climateclevercloversnewparadigmtoreducetheenvironmentalfootprintofruminantsbybreedinglowmethanogenicforagesutilizinghaplotypevariation
_version_ 1725680853574483968
spelling doaj-9d8ca678a81c414ea8351b85b1e242cf2020-11-24T22:47:52ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2017-09-01810.3389/fpls.2017.01463288857Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype VariationParwinder Kaur0Parwinder Kaur1Parwinder Kaur2Parwinder Kaur3Rudi Appels4Philipp E. Bayer5Gabriel Keeble-Gagnere6Jiankang Wang7Hideki Hirakawa8Kenta Shirasawa9Philip Vercoe10Philip Vercoe11Katia Stefanova12Katia Stefanova13Zoey Durmic14Zoey Durmic15Phillip Nichols16Phillip Nichols17Clinton Revell18Clinton Revell19Sachiko N. Isobe20David Edwards21David Edwards22William Erskine23William Erskine24William Erskine25Centre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaCentre for Personalised Medicine for Children, Telethon Kids Institute, SubiacoWA, AustraliaMurdoch University, PerthWA, AustraliaSchool of Biological Sciences, The University of Western Australia, CrawleyWA, AustraliaMurdoch University, PerthWA, AustraliaInstitute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, ChinaKazusa DNA Research InstituteKisarazu, JapanKazusa DNA Research InstituteKisarazu, JapanSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaDepartment of Agriculture and Food Western Australia, South PerthWA, AustraliaSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaCentre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaDepartment of Agriculture and Food Western Australia, South PerthWA, AustraliaCentre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaDepartment of Agriculture and Food Western Australia, South PerthWA, AustraliaKazusa DNA Research InstituteKisarazu, JapanInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaSchool of Biological Sciences, The University of Western Australia, CrawleyWA, AustraliaCentre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, AustraliaSchool of Agriculture and Environment, The University of Western Australia, CrawleyWA, AustraliaInstitute of Agriculture, The University of Western Australia, CrawleyWA, AustraliaMitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production.http://journal.frontiersin.org/article/10.3389/fpls.2017.01463/fullgreenhouse gas emissionsruminant enteric methanogenesisgenetic and genomic analysesforage cropsnatural variationselecting haplotypes