Estimation of RC slab-column joints effective strength using neural networks
The nominal strength of slab-column joints made of highstrength concrete (HSC) columns and normal strength concrete (NSC) slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of colu...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Marcílio Alves
|
Series: | Latin American Journal of Solids and Structures |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252011000400002&lng=en&tlng=en |
id |
doaj-9d914277df61471f925396f2e6ec1931 |
---|---|
record_format |
Article |
spelling |
doaj-9d914277df61471f925396f2e6ec19312020-11-25T01:32:29ZengMarcílio AlvesLatin American Journal of Solids and Structures1679-78258439341110.1590/S1679-78252011000400002S1679-78252011000400002Estimation of RC slab-column joints effective strength using neural networksA. A. Shah0Y. Ribakov1King Saud UniversityAriel UniversityThe nominal strength of slab-column joints made of highstrength concrete (HSC) columns and normal strength concrete (NSC) slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252011000400002&lng=en&tlng=encolumn-slab jointeffective strengthhigh strength columnnormal strength slabneural networkregression |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. A. Shah Y. Ribakov |
spellingShingle |
A. A. Shah Y. Ribakov Estimation of RC slab-column joints effective strength using neural networks Latin American Journal of Solids and Structures column-slab joint effective strength high strength column normal strength slab neural network regression |
author_facet |
A. A. Shah Y. Ribakov |
author_sort |
A. A. Shah |
title |
Estimation of RC slab-column joints effective strength using neural networks |
title_short |
Estimation of RC slab-column joints effective strength using neural networks |
title_full |
Estimation of RC slab-column joints effective strength using neural networks |
title_fullStr |
Estimation of RC slab-column joints effective strength using neural networks |
title_full_unstemmed |
Estimation of RC slab-column joints effective strength using neural networks |
title_sort |
estimation of rc slab-column joints effective strength using neural networks |
publisher |
Marcílio Alves |
series |
Latin American Journal of Solids and Structures |
issn |
1679-7825 |
description |
The nominal strength of slab-column joints made of highstrength concrete (HSC) columns and normal strength concrete (NSC) slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes. |
topic |
column-slab joint effective strength high strength column normal strength slab neural network regression |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252011000400002&lng=en&tlng=en |
work_keys_str_mv |
AT aashah estimationofrcslabcolumnjointseffectivestrengthusingneuralnetworks AT yribakov estimationofrcslabcolumnjointseffectivestrengthusingneuralnetworks |
_version_ |
1725081845439135744 |