Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc

Introduction: Weirs are one of the common structures for discharge and flow measurement. Therefore,these types of hydraulic structures depending on the purposeofuse havedifferent shapes. In some cases, due to practical constraints, spillways with curvature in plan are designed. In such situations st...

Full description

Bibliographic Details
Main Authors: T. Eshrati, R. Fazloula, M. Sanei, A. Emadi
Format: Article
Language:fas
Published: Ferdowsi University of Mashhad 2016-02-01
Series:مجله آب و خاک
Subjects:
Online Access:http://jsw.um.ac.ir/index.php/jsw/article/view/27403
id doaj-9dc4a9ee4a384a8bb9294927caae2e5f
record_format Article
collection DOAJ
language fas
format Article
sources DOAJ
author T. Eshrati
R. Fazloula
M. Sanei
A. Emadi
spellingShingle T. Eshrati
R. Fazloula
M. Sanei
A. Emadi
Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc
مجله آب و خاک
Cavitation
Discharge Coefficient
Flow Convergence
Ogee Spillway
Spillway Curvature
author_facet T. Eshrati
R. Fazloula
M. Sanei
A. Emadi
author_sort T. Eshrati
title Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc
title_short Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc
title_full Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc
title_fullStr Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc
title_full_unstemmed Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial Arc
title_sort laboratory study of hydraulic performance of ogee spillway and downstream canal with axial arc
publisher Ferdowsi University of Mashhad
series مجله آب و خاک
issn 2008-4757
2423-396X
publishDate 2016-02-01
description Introduction: Weirs are one of the common structures for discharge and flow measurement. Therefore,these types of hydraulic structures depending on the purposeofuse havedifferent shapes. In some cases, due to practical constraints, spillways with curvature in plan are designed. In such situations study of flow distribution over the spillway and other related parameters, will be important. In this study, a physical model of dam spillway, which is type of ogee-crested weir with curvature in plan, were tested. Also in order to investigate the effects of curvature on the performance of the flow, the second model of spillway in normal shape, with similar geometric and hydraulic conditions, were compared. Materials and Methods: First physical model of prototype is built at the scale of 1:75 and the second model was constructed in straight form (without curvature in plan) with similar geometric conditions to the first model. Spillways have been designed according to USBR standard for design head at value of 4 cm in model and vertical upstream face. Experiments were performed in Soil Conservation and Watershed Management Research Institute at reservoir with dimensions 1.2 m length, 0.70 m width and 0.5 m height walls of Plexiglas. To measure the flow discharge, a sharp triangular weir with apex angle of 90˚ in the output of channle was used. Measurements in first model were conducted with five discharges and five values of h/Hd (0.53, 0.74, 0.90, 1.08 and 1.44) and for six sectors on spillway body. To evaluate the effect of curvature, flow performance and discharge coefficient changes were compared for five early discharges (ratio of critical depth to design head at value of 0.28, 0.44, 0.58, 0.72 and 0.81) and six other discharge (mentioned ratio at value of 0.36, 0.51, 0.66, 0.76 and 0.83) in both models. Results and Discussion: The results related to the first model showed that by increasing the ratio of head to design head (h/Hd), rate of spillway discharge coefficient increases to the value of 1.72 and decreases to 1.23, when the weir was submerged. It also observed that with increase in flow rate of each discharge and reducing the pressure along the spillway, possibility of vacuum-creation and corrosion of structure increased and the corrosion rate witch introduced by Cavitation Index decreased. The minimum value for Cavitation Index that has been calculated was 1.45 that is greater than the critical value of it. The results of the pressure distribution and changes of Cavitation Index in first model showed, the minimum height of the pressure for each discharge occurred at the end of ogee profile and the minimum value of the Cavitation Index occurred at the last section of spillway in downstream for the value of h/Hd=0.53.As well as for all test cases in this study, the maximum velocity and minimum of Cavitation Index were calculated at the same section of spillway where hydraulic jump was observed. On the other hand, it was observed that with increasing flow rate, the critical section moves upward on the spillway body. The results related to the spillway efficiency generally indicated that by increasing the ratio of critical depth to design head (yc/Hd) discharge coefficient increases. In fact, by increasing the ratio of h/Hd and increase the discharge rate up to design discharge, the amount of evacuation and efficiency of both models goes up. For larger discharges, the flow is blocked by the spillway forehead and model efficiency will decrease due to submersion and flow rejection. Results obtained from comparison of two models indicated for the spillway in normal shape submergence of the weir occurred faster and discharge coefficient of each test achieved in lesser value per test, So that the discharge coefficient increasing in curved spillway continued until the value of 0.81 yc/Hd (at 10.3 lit/s of discharge) and in normal shape until the value of 0.72 yc/Hd (at 9.2 lit/s of discharge). Therefore it seems that the upward central arch factor will increase the discharge coefficient and efficiency of spillway. Conclusion: In the present research the hydraulic performance of ogee spillway with curved plan to investigate the pressure distribution and the vacuum-creation and in particular to compare the results related to flow performance and the effect of spillway curvature on its performance were studied using two experimental models. The impact of increasing the discharge coefficient for the weir with upward central arch compared to weir with straight crest, in terms of similar geometric and hydraulic conditions, was calculated to the value of 21 percent, in this study.
topic Cavitation
Discharge Coefficient
Flow Convergence
Ogee Spillway
Spillway Curvature
url http://jsw.um.ac.ir/index.php/jsw/article/view/27403
work_keys_str_mv AT teshrati laboratorystudyofhydraulicperformanceofogeespillwayanddownstreamcanalwithaxialarc
AT rfazloula laboratorystudyofhydraulicperformanceofogeespillwayanddownstreamcanalwithaxialarc
AT msanei laboratorystudyofhydraulicperformanceofogeespillwayanddownstreamcanalwithaxialarc
AT aemadi laboratorystudyofhydraulicperformanceofogeespillwayanddownstreamcanalwithaxialarc
_version_ 1721405691089911808
spelling doaj-9dc4a9ee4a384a8bb9294927caae2e5f2021-06-02T09:29:29ZfasFerdowsi University of Mashhadمجله آب و خاک2008-47572423-396X2016-02-0129487488510.22067/jsw.v0i0.274039563Laboratory Study of Hydraulic Performance of Ogee Spillway and Downstream Canal with Axial ArcT. Eshrati0R. Fazloula1M. Sanei2A. Emadi3Sari Agricultural Sciences and Natural Resources UniversitySari Agricultural Sciences and Natural Resources UniversitySoil Conservation and Watershed Management Research Institute, TehranSari Agricultural Sciences and Natural Resources UniversityIntroduction: Weirs are one of the common structures for discharge and flow measurement. Therefore,these types of hydraulic structures depending on the purposeofuse havedifferent shapes. In some cases, due to practical constraints, spillways with curvature in plan are designed. In such situations study of flow distribution over the spillway and other related parameters, will be important. In this study, a physical model of dam spillway, which is type of ogee-crested weir with curvature in plan, were tested. Also in order to investigate the effects of curvature on the performance of the flow, the second model of spillway in normal shape, with similar geometric and hydraulic conditions, were compared. Materials and Methods: First physical model of prototype is built at the scale of 1:75 and the second model was constructed in straight form (without curvature in plan) with similar geometric conditions to the first model. Spillways have been designed according to USBR standard for design head at value of 4 cm in model and vertical upstream face. Experiments were performed in Soil Conservation and Watershed Management Research Institute at reservoir with dimensions 1.2 m length, 0.70 m width and 0.5 m height walls of Plexiglas. To measure the flow discharge, a sharp triangular weir with apex angle of 90˚ in the output of channle was used. Measurements in first model were conducted with five discharges and five values of h/Hd (0.53, 0.74, 0.90, 1.08 and 1.44) and for six sectors on spillway body. To evaluate the effect of curvature, flow performance and discharge coefficient changes were compared for five early discharges (ratio of critical depth to design head at value of 0.28, 0.44, 0.58, 0.72 and 0.81) and six other discharge (mentioned ratio at value of 0.36, 0.51, 0.66, 0.76 and 0.83) in both models. Results and Discussion: The results related to the first model showed that by increasing the ratio of head to design head (h/Hd), rate of spillway discharge coefficient increases to the value of 1.72 and decreases to 1.23, when the weir was submerged. It also observed that with increase in flow rate of each discharge and reducing the pressure along the spillway, possibility of vacuum-creation and corrosion of structure increased and the corrosion rate witch introduced by Cavitation Index decreased. The minimum value for Cavitation Index that has been calculated was 1.45 that is greater than the critical value of it. The results of the pressure distribution and changes of Cavitation Index in first model showed, the minimum height of the pressure for each discharge occurred at the end of ogee profile and the minimum value of the Cavitation Index occurred at the last section of spillway in downstream for the value of h/Hd=0.53.As well as for all test cases in this study, the maximum velocity and minimum of Cavitation Index were calculated at the same section of spillway where hydraulic jump was observed. On the other hand, it was observed that with increasing flow rate, the critical section moves upward on the spillway body. The results related to the spillway efficiency generally indicated that by increasing the ratio of critical depth to design head (yc/Hd) discharge coefficient increases. In fact, by increasing the ratio of h/Hd and increase the discharge rate up to design discharge, the amount of evacuation and efficiency of both models goes up. For larger discharges, the flow is blocked by the spillway forehead and model efficiency will decrease due to submersion and flow rejection. Results obtained from comparison of two models indicated for the spillway in normal shape submergence of the weir occurred faster and discharge coefficient of each test achieved in lesser value per test, So that the discharge coefficient increasing in curved spillway continued until the value of 0.81 yc/Hd (at 10.3 lit/s of discharge) and in normal shape until the value of 0.72 yc/Hd (at 9.2 lit/s of discharge). Therefore it seems that the upward central arch factor will increase the discharge coefficient and efficiency of spillway. Conclusion: In the present research the hydraulic performance of ogee spillway with curved plan to investigate the pressure distribution and the vacuum-creation and in particular to compare the results related to flow performance and the effect of spillway curvature on its performance were studied using two experimental models. The impact of increasing the discharge coefficient for the weir with upward central arch compared to weir with straight crest, in terms of similar geometric and hydraulic conditions, was calculated to the value of 21 percent, in this study.http://jsw.um.ac.ir/index.php/jsw/article/view/27403CavitationDischarge CoefficientFlow ConvergenceOgee SpillwaySpillway Curvature