Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia.
Hypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1(-/-) mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2009-06-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2694354?pdf=render |
id |
doaj-9e6ad31e9433415da141466b63253b37 |
---|---|
record_format |
Article |
spelling |
doaj-9e6ad31e9433415da141466b63253b372020-11-24T21:45:53ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-06-0146e597810.1371/journal.pone.0005978Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia.Sally H VitaliS Alex MitsialisOlin D LiangXiaoli LiuAngeles Fernandez-GonzalezHelen ChristouXinqi WuFrancis X McGowanStella KourembanasHypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1(-/-) mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural thrombi. Our objective was to identify the HO-1 product(s) mediating RV protection from hypoxic injury in HO-1(-/-) mice.HO-1(-/-) mice were exposed to seven weeks of hypoxia and treated with inhaled CO or biliverdin injections. CO reduced right ventricular systolic pressure (RVSP) and prevented hypoxic pulmonary arteriolar remodeling in both HO-1(-/-) and control mice. Biliverdin had no significant effect on arteriolar remodeling or RVSP in either genotype. Despite this, biliverdin prevented RV failure in the hypoxic HO-1(-/-) mice (0/14 manifested RV wall fibrosis or thrombus), while CO-treated HO-1(-/-) mice developed RV insults similar to untreated controls. In vitro, CO inhibited hypoxic VSMC proliferation and migration but did not prevent cardiomyocyte death from anoxia-reoxygenation (A-R). In contrast, bilirubin limited A-R-induced cardiomyocyte death but did not inhibit VSMC proliferation and migration.CO and bilirubin have distinct protective actions in the heart and pulmonary vasculature during chronic hypoxia. Moreover, reducing pulmonary vascular resistance may not prevent RV injury in hypoxia-induced PAH; supporting RV adaptation to hypoxia and preventing RV failure must be a therapeutic goal.http://europepmc.org/articles/PMC2694354?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sally H Vitali S Alex Mitsialis Olin D Liang Xiaoli Liu Angeles Fernandez-Gonzalez Helen Christou Xinqi Wu Francis X McGowan Stella Kourembanas |
spellingShingle |
Sally H Vitali S Alex Mitsialis Olin D Liang Xiaoli Liu Angeles Fernandez-Gonzalez Helen Christou Xinqi Wu Francis X McGowan Stella Kourembanas Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. PLoS ONE |
author_facet |
Sally H Vitali S Alex Mitsialis Olin D Liang Xiaoli Liu Angeles Fernandez-Gonzalez Helen Christou Xinqi Wu Francis X McGowan Stella Kourembanas |
author_sort |
Sally H Vitali |
title |
Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. |
title_short |
Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. |
title_full |
Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. |
title_fullStr |
Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. |
title_full_unstemmed |
Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. |
title_sort |
divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2009-06-01 |
description |
Hypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1(-/-) mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural thrombi. Our objective was to identify the HO-1 product(s) mediating RV protection from hypoxic injury in HO-1(-/-) mice.HO-1(-/-) mice were exposed to seven weeks of hypoxia and treated with inhaled CO or biliverdin injections. CO reduced right ventricular systolic pressure (RVSP) and prevented hypoxic pulmonary arteriolar remodeling in both HO-1(-/-) and control mice. Biliverdin had no significant effect on arteriolar remodeling or RVSP in either genotype. Despite this, biliverdin prevented RV failure in the hypoxic HO-1(-/-) mice (0/14 manifested RV wall fibrosis or thrombus), while CO-treated HO-1(-/-) mice developed RV insults similar to untreated controls. In vitro, CO inhibited hypoxic VSMC proliferation and migration but did not prevent cardiomyocyte death from anoxia-reoxygenation (A-R). In contrast, bilirubin limited A-R-induced cardiomyocyte death but did not inhibit VSMC proliferation and migration.CO and bilirubin have distinct protective actions in the heart and pulmonary vasculature during chronic hypoxia. Moreover, reducing pulmonary vascular resistance may not prevent RV injury in hypoxia-induced PAH; supporting RV adaptation to hypoxia and preventing RV failure must be a therapeutic goal. |
url |
http://europepmc.org/articles/PMC2694354?pdf=render |
work_keys_str_mv |
AT sallyhvitali divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT salexmitsialis divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT olindliang divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT xiaoliliu divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT angelesfernandezgonzalez divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT helenchristou divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT xinqiwu divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT francisxmcgowan divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia AT stellakourembanas divergentcardiopulmonaryactionsofhemeoxygenaseenzymaticproductsinchronichypoxia |
_version_ |
1725903583002492928 |