Feature-Parameter-Criterion for Predicting Lean Blowout Limit of Gas Turbine Combustor and Bluff Body Burner

Lean blowout (LBO) limit is one of the most important combustor parameters. A new method named Feature-Parameter-Criterion (FPC) for predicting LBO limit has been put forward in the present work. A computational fluid dynamics (CFD) software FLUENT has been used to simulate the process of LBO of gas...

Full description

Bibliographic Details
Main Authors: Hongtao Zheng, Zhibo Zhang, Yajun Li, Zhiming Li
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2013/939234
Description
Summary:Lean blowout (LBO) limit is one of the most important combustor parameters. A new method named Feature-Parameter-Criterion (FPC) for predicting LBO limit has been put forward in the present work. A computational fluid dynamics (CFD) software FLUENT has been used to simulate the process of LBO of gas turbine combustor and bluff body burner. And “M” flame has been proposed as the portent for predicting lean blowout of gas turbine combustor. Effects of flow velocity, air temperature, droplet averaged-diameter, and flow distribution between swirlers and primary holes on the LBO limit of gas turbine combustor have been researched by use of Feature-Parameter-Criterion in this paper. The effects of fuel air mixture velocity and different structures on bluff body LBO limit have also been analyzed in the present work by use of FPC. The results show that the simulation of LBO limit based on FPC is in good agreement with the experiment data (the errors are about 5%) and this method is reliable for engineering applications.
ISSN:1024-123X
1563-5147