Circular Economy and E-Waste: An Opportunity from RFID TAGs

In this work, a deep economic and technical analysis for the enhancement of e-waste hierarchy applied to the Radio Frequency Identification (RFID) tags is presented. Nowadays, the RFID technology represents a valuable solution for many applications to improve the quality and efficiency of the supply...

Full description

Bibliographic Details
Main Authors: Alessia Condemi, Federica Cucchiella, Domenico Schettini
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/16/3422
Description
Summary:In this work, a deep economic and technical analysis for the enhancement of e-waste hierarchy applied to the Radio Frequency Identification (RFID) tags is presented. Nowadays, the RFID technology represents a valuable solution for many applications to improve the quality and efficiency of the supply chain, as well as for enhanced people or object identification and smart devices. This leads to massive usage of such devices that could represent a threat to the environment, since they are often considered as generic waste and no specific e-waste policy has been identified for RFID. For these reasons, the paper presents a study based on the desk research technique to propose several possibilities currently available for producers of different RFID devices in order to mitigate this problem at every e-waste hierarchy stage, i.e., ecological design and prevention, reuse, recycle, and disposal. Moreover, a cost/benefit analysis has been reported in order to highlight the economic advantages related to the RFID tags reuse, as well as environmental impact reduction. Results proved that passive RFID tags represent the major candidate for the e-waste hierarchy enhancement at every level, demonstrating that it is more convenient for the producer to consider an ecologically aware design and promote a take-back system for tags in order to take advantages from the solution proposed for the RFID e-waste hierarchy.
ISSN:2076-3417