From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
Let <i>G</i> be a graph with no isolated vertex and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo>&...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/7/1282 |
id |
doaj-9f856352f2a34d36a092e26086737575 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ana Almerich-Chulia Abel Cabrera Martínez Frank Angel Hernández Mira Pedro Martin-Concepcion |
spellingShingle |
Ana Almerich-Chulia Abel Cabrera Martínez Frank Angel Hernández Mira Pedro Martin-Concepcion From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs Symmetry strongly total Roman domination total Roman domination total domination lexicographic product graph |
author_facet |
Ana Almerich-Chulia Abel Cabrera Martínez Frank Angel Hernández Mira Pedro Martin-Concepcion |
author_sort |
Ana Almerich-Chulia |
title |
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs |
title_short |
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs |
title_full |
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs |
title_fullStr |
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs |
title_full_unstemmed |
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs |
title_sort |
from total roman domination in lexicographic product graphs to strongly total roman domination in graphs |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-07-01 |
description |
Let <i>G</i> be a graph with no isolated vertex and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the open neighbourhood of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula> be a function and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>:</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>}</mo></mrow></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula>. We say that <i>f</i> is a strongly total Roman dominating function on <i>G</i> if the subgraph induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>∪</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> has no isolated vertex and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∩</mo><msub><mi>V</mi><mn>2</mn></msub><mo>≠</mo><mo>∅</mo></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. The strongly total Roman domination number of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is defined as the minimum weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all strongly total Roman dominating functions <i>f</i> on <i>G</i>. This paper is devoted to the study of the strongly total Roman domination number of a graph and it is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we show that the theory of strongly total Roman domination is an appropriate framework for investigating the total Roman domination number of lexicographic product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some product graphs. Finally and as a consequence of the study, we prove that the problem of computing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is NP-hard. |
topic |
strongly total Roman domination total Roman domination total domination lexicographic product graph |
url |
https://www.mdpi.com/2073-8994/13/7/1282 |
work_keys_str_mv |
AT anaalmerichchulia fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs AT abelcabreramartinez fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs AT frankangelhernandezmira fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs AT pedromartinconcepcion fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs |
_version_ |
1721285535971934208 |
spelling |
doaj-9f856352f2a34d36a092e260867375752021-07-23T14:09:32ZengMDPI AGSymmetry2073-89942021-07-01131282128210.3390/sym13071282From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in GraphsAna Almerich-Chulia0Abel Cabrera Martínez1Frank Angel Hernández Mira2Pedro Martin-Concepcion3Department of Continuum Mechanics and Theory of Structures, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, SpainDepartament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, SpainCentro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Los Pinos s/n, Colonia El Roble, Acapulco 39640, MexicoDepartment of Continuum Mechanics and Theory of Structures, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, SpainLet <i>G</i> be a graph with no isolated vertex and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the open neighbourhood of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula> be a function and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>:</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>}</mo></mrow></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula>. We say that <i>f</i> is a strongly total Roman dominating function on <i>G</i> if the subgraph induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>∪</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> has no isolated vertex and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∩</mo><msub><mi>V</mi><mn>2</mn></msub><mo>≠</mo><mo>∅</mo></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. The strongly total Roman domination number of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is defined as the minimum weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all strongly total Roman dominating functions <i>f</i> on <i>G</i>. This paper is devoted to the study of the strongly total Roman domination number of a graph and it is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we show that the theory of strongly total Roman domination is an appropriate framework for investigating the total Roman domination number of lexicographic product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some product graphs. Finally and as a consequence of the study, we prove that the problem of computing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is NP-hard.https://www.mdpi.com/2073-8994/13/7/1282strongly total Roman dominationtotal Roman dominationtotal dominationlexicographic product graph |