From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs

Let <i>G</i> be a graph with no isolated vertex and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo>&...

Full description

Bibliographic Details
Main Authors: Ana Almerich-Chulia, Abel Cabrera Martínez, Frank Angel Hernández Mira, Pedro Martin-Concepcion
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1282
id doaj-9f856352f2a34d36a092e26086737575
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Ana Almerich-Chulia
Abel Cabrera Martínez
Frank Angel Hernández Mira
Pedro Martin-Concepcion
spellingShingle Ana Almerich-Chulia
Abel Cabrera Martínez
Frank Angel Hernández Mira
Pedro Martin-Concepcion
From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
Symmetry
strongly total Roman domination
total Roman domination
total domination
lexicographic product graph
author_facet Ana Almerich-Chulia
Abel Cabrera Martínez
Frank Angel Hernández Mira
Pedro Martin-Concepcion
author_sort Ana Almerich-Chulia
title From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
title_short From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
title_full From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
title_fullStr From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
title_full_unstemmed From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs
title_sort from total roman domination in lexicographic product graphs to strongly total roman domination in graphs
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-07-01
description Let <i>G</i> be a graph with no isolated vertex and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the open neighbourhood of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula> be a function and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>:</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>}</mo></mrow></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula>. We say that <i>f</i> is a strongly total Roman dominating function on <i>G</i> if the subgraph induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>∪</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> has no isolated vertex and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∩</mo><msub><mi>V</mi><mn>2</mn></msub><mo>≠</mo><mo>∅</mo></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. The strongly total Roman domination number of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is defined as the minimum weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all strongly total Roman dominating functions <i>f</i> on <i>G</i>. This paper is devoted to the study of the strongly total Roman domination number of a graph and it is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we show that the theory of strongly total Roman domination is an appropriate framework for investigating the total Roman domination number of lexicographic product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some product graphs. Finally and as a consequence of the study, we prove that the problem of computing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is NP-hard.
topic strongly total Roman domination
total Roman domination
total domination
lexicographic product graph
url https://www.mdpi.com/2073-8994/13/7/1282
work_keys_str_mv AT anaalmerichchulia fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs
AT abelcabreramartinez fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs
AT frankangelhernandezmira fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs
AT pedromartinconcepcion fromtotalromandominationinlexicographicproductgraphstostronglytotalromandominationingraphs
_version_ 1721285535971934208
spelling doaj-9f856352f2a34d36a092e260867375752021-07-23T14:09:32ZengMDPI AGSymmetry2073-89942021-07-01131282128210.3390/sym13071282From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in GraphsAna Almerich-Chulia0Abel Cabrera Martínez1Frank Angel Hernández Mira2Pedro Martin-Concepcion3Department of Continuum Mechanics and Theory of Structures, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, SpainDepartament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, SpainCentro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Los Pinos s/n, Colonia El Roble, Acapulco 39640, MexicoDepartment of Continuum Mechanics and Theory of Structures, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, SpainLet <i>G</i> be a graph with no isolated vertex and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the open neighbourhood of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula> be a function and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>i</mi></msub><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>:</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>}</mo></mrow></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>∈</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></semantics></math></inline-formula>. We say that <i>f</i> is a strongly total Roman dominating function on <i>G</i> if the subgraph induced by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mn>1</mn></msub><mo>∪</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> has no isolated vertex and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∩</mo><msub><mi>V</mi><mn>2</mn></msub><mo>≠</mo><mo>∅</mo></mrow></semantics></math></inline-formula> for every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>\</mo><msub><mi>V</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>. The strongly total Roman domination number of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is defined as the minimum weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all strongly total Roman dominating functions <i>f</i> on <i>G</i>. This paper is devoted to the study of the strongly total Roman domination number of a graph and it is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we show that the theory of strongly total Roman domination is an appropriate framework for investigating the total Roman domination number of lexicographic product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some product graphs. Finally and as a consequence of the study, we prove that the problem of computing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>γ</mi><mrow><mi>t</mi><mi>R</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is NP-hard.https://www.mdpi.com/2073-8994/13/7/1282strongly total Roman dominationtotal Roman dominationtotal dominationlexicographic product graph