Co-Administration of Gagam-Sipjeondaebo-Tang and Ibuprofen Alleviates the Inflammatory Response in MPTP-Induced Parkinson’s Disease Mouse Model and RAW264.7 Macrophages

Parkinson’s disease (PD), a common neurodegenerative disease, is characterized by degeneration of dopaminergic neurons with neuroinflammation. Gagam-Sipjeondaebo-Tang (GST), a traditional herbal formula made of twelve medicinal herbs, is known to be effective in PD, and the use of ibuprofen has been...

Full description

Bibliographic Details
Main Authors: Sodam Won, Jade Heejae Ko, Hayoung Jeon, Seong-Sik Park, Seung-Nam Kim
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Pathogens
Subjects:
Online Access:https://www.mdpi.com/2076-0817/10/3/268
Description
Summary:Parkinson’s disease (PD), a common neurodegenerative disease, is characterized by degeneration of dopaminergic neurons with neuroinflammation. Gagam-Sipjeondaebo-Tang (GST), a traditional herbal formula made of twelve medicinal herbs, is known to be effective in PD, and the use of ibuprofen has been associated with a lower risk of PD. The aim of this study was to evaluate whether the combined administration of GST and ibuprofen affects the inflammatory response of Parkinson’s disease. MPTP-induced parkinsonian mouse models were treated with GST or ibuprofen using oral gavage once a day for 5 days. The effects of GST were examined by measuring the TH level and expression of CD68 in the mice brain in addition to behavioral tests. The anti-inflammatory effect of GST on the LPS-treated RAW264.7 murine macrophages was examined using the NO assay. Inflammatory cytokines were analyzed using quantitative-PCR and flow cytometry. In the results, GST significantly improved the loss of dopaminergic neurons and alleviated PD-induced behavioral deficits. GST also decreased macrophage activation in the MPTP-induced PD mouse model. Interestingly, co-administration of GST and ibuprofen showed a synergistic effect in improving the loss of dopaminergic neurons and decreasing the activation of macrophages. Moreover, the NO level decreased in LPS-stimulated macrophages with this combined treatment. GST reduced iNOS, COX-2, IL-1β, and IL-6 levels, and co-administration with ibuprofen showed a synergistic effect. Furthermore, pretreatment of GST reduced the expression levels of MCP-1 and IL-12 p70 in LPS-stimulated RAW264.7 cells. These results can possibly suggest a future therapeutic approach for PD patients.
ISSN:2076-0817