Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids
Nanofluid viscosity is an important physical property in convective heat transfer phenomena. However, the current theoretical models for nanofluid viscosity prediction are only applicable across a limited range. In this study, 1277 experimental data points of distinct nanofluid relative viscosity (N...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-01-01
|
Series: | Engineering Applications of Computational Fluid Mechanics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/19942060.2018.1542345 |
Summary: | Nanofluid viscosity is an important physical property in convective heat transfer phenomena. However, the current theoretical models for nanofluid viscosity prediction are only applicable across a limited range. In this study, 1277 experimental data points of distinct nanofluid relative viscosity (NF-RV) were gathered from a plenary literature review. In order to create a general model, adaptive network-based fuzzy inference system (ANFIS) code was expanded based on the independent variables of temperature, nanoparticle diameter, nanofluid density, volumetric fraction, and viscosity of the base fluid. A statistical analysis of the data for training and testing (with R2 = .99997) demonstrates the accuracy of the model. In addition, the results obtained from ANFIS are compared to similar experimental data and show absolute and maximum average relative deviations of about 0.42 and 6.45%, respectively. Comparisons with other theoretical models from previous research is used to verify the model and prove the prediction capabilities of ANFIS. Consequently, this tool can be of huge value in helping chemists and mechanical and chemical engineers – especially those who are dealing with heat transfer applications by nanofluids – by providing highly accurate predictions of NF-RVs. |
---|---|
ISSN: | 1994-2060 1997-003X |