Electroacupuncture Improves Pregnancy Outcomes in Rats with Thin Endometrium by Promoting the Expression of Pinopode-Related Molecules

A thin endometrium affects the success of assisted reproduction due to low endometrial receptivity. Acupuncture improves endometrial receptivity and promotes the formation of pinopodes, the ultrastructure marker implantation window. However, the specific underlying mechanisms remain unclear. In this...

Full description

Bibliographic Details
Main Authors: Jin Xi, Jie Cheng, Chun-chun Jin, Jing-yu Liu, Zhen-ru Shen, Liang-jun Xia, Qian Li, Jie Shen, You-bing Xia, Bin Xu
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2021/6658321
Description
Summary:A thin endometrium affects the success of assisted reproduction due to low endometrial receptivity. Acupuncture improves endometrial receptivity and promotes the formation of pinopodes, the ultrastructure marker implantation window. However, the specific underlying mechanisms remain unclear. In this study, the efficacy of acupuncture treatment and its underlying mechanism were investigated by analyzing pregnancy rate, pinopode formation, and related molecular markers in thin endometrium model rats. Absolute ethanol (95%) was injected into the uteruses of female Sprague-Dawley rats to construct a thin endometrium model. In this model, acupuncture stimulation at EX-CA1, SP6, and CV4 ameliorated the pregnancy rate. Significantly increased embryo implantation, endometrial thickness, numbers of glands, and blood vessels were observed in the electroacupuncture (EA) group compared to the model group. The number of pinopodes in the EA group was abundant, with a shape similar to that of the control group. Additionally, significantly higher expression levels of pinopode-related markers, including integrin αvβ3, homeobox A10 (HOXA10), heparin-binding EGF-like growth factor (HBEGF), estrogen receptor alpha (ERα), and progesterone receptor (PR), were observed in the EA group than those in the model group. In conclusion, EA had a positive effect on the endometrial receptivity of thin endometrium model rats by improving pinopode formation through multiple molecular targets.
ISSN:2314-6141