The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene

We consider the low-temperature expansion of the Casimir-Polder free energy for an atom and graphene by using the Poisson representation of the free energy. We extend our previous analysis on the different relations between chemical potential <inline-formula><math display="inline"...

Full description

Bibliographic Details
Main Authors: Nail Khusnutdinov, Natalia Emelianova
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/3/70
id doaj-a06e39613f40469fb572611a8734e61c
record_format Article
spelling doaj-a06e39613f40469fb572611a8734e61c2021-03-17T00:00:24ZengMDPI AGUniverse2218-19972021-03-017707010.3390/universe7030070The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with GrapheneNail Khusnutdinov0Natalia Emelianova1Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André 09210-170, SP, BrazilCentro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André 09210-170, SP, BrazilWe consider the low-temperature expansion of the Casimir-Polder free energy for an atom and graphene by using the Poisson representation of the free energy. We extend our previous analysis on the different relations between chemical potential <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi></semantics></math></inline-formula> and mass gap parameter <i>m</i>. The key role plays the dependence of graphene conductivities on the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi></semantics></math></inline-formula> and <i>m</i>. For simplicity, we made the manifest calculations for zero values of the Fermi velocity. For <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>></mo><mi>m</mi></mrow></semantics></math></inline-formula>, the thermal correction <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∼</mo><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, and for <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo><</mo><mi>m</mi></mrow></semantics></math></inline-formula>, we confirm the recent result of Klimchitskaya and Mostepanenko, that the thermal correction <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∼</mo><msup><mi>T</mi><mn>5</mn></msup></mrow></semantics></math></inline-formula>. In the case of exact equality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>=</mo><mi>m</mi></mrow></semantics></math></inline-formula>, the correction <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∼</mo><mi>T</mi></mrow></semantics></math></inline-formula>. This point is unstable, and the system falls to the regime with <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>></mo><mi>m</mi></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo><</mo><mi>m</mi></mrow></semantics></math></inline-formula>. The analytical calculations are illustrated by numerical evaluations for the Hydrogen atom/graphene system.https://www.mdpi.com/2218-1997/7/3/70Casimir-Polder forcegraphenedispersion forces
collection DOAJ
language English
format Article
sources DOAJ
author Nail Khusnutdinov
Natalia Emelianova
spellingShingle Nail Khusnutdinov
Natalia Emelianova
The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene
Universe
Casimir-Polder force
graphene
dispersion forces
author_facet Nail Khusnutdinov
Natalia Emelianova
author_sort Nail Khusnutdinov
title The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene
title_short The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene
title_full The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene
title_fullStr The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene
title_full_unstemmed The Low-Temperature Expansion of the Casimir-Polder Free Energy of an Atom with Graphene
title_sort low-temperature expansion of the casimir-polder free energy of an atom with graphene
publisher MDPI AG
series Universe
issn 2218-1997
publishDate 2021-03-01
description We consider the low-temperature expansion of the Casimir-Polder free energy for an atom and graphene by using the Poisson representation of the free energy. We extend our previous analysis on the different relations between chemical potential <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi></semantics></math></inline-formula> and mass gap parameter <i>m</i>. The key role plays the dependence of graphene conductivities on the <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>μ</mi></semantics></math></inline-formula> and <i>m</i>. For simplicity, we made the manifest calculations for zero values of the Fermi velocity. For <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>></mo><mi>m</mi></mrow></semantics></math></inline-formula>, the thermal correction <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∼</mo><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, and for <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo><</mo><mi>m</mi></mrow></semantics></math></inline-formula>, we confirm the recent result of Klimchitskaya and Mostepanenko, that the thermal correction <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∼</mo><msup><mi>T</mi><mn>5</mn></msup></mrow></semantics></math></inline-formula>. In the case of exact equality <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>=</mo><mi>m</mi></mrow></semantics></math></inline-formula>, the correction <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∼</mo><mi>T</mi></mrow></semantics></math></inline-formula>. This point is unstable, and the system falls to the regime with <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo>></mo><mi>m</mi></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>μ</mi><mo><</mo><mi>m</mi></mrow></semantics></math></inline-formula>. The analytical calculations are illustrated by numerical evaluations for the Hydrogen atom/graphene system.
topic Casimir-Polder force
graphene
dispersion forces
url https://www.mdpi.com/2218-1997/7/3/70
work_keys_str_mv AT nailkhusnutdinov thelowtemperatureexpansionofthecasimirpolderfreeenergyofanatomwithgraphene
AT nataliaemelianova thelowtemperatureexpansionofthecasimirpolderfreeenergyofanatomwithgraphene
AT nailkhusnutdinov lowtemperatureexpansionofthecasimirpolderfreeenergyofanatomwithgraphene
AT nataliaemelianova lowtemperatureexpansionofthecasimirpolderfreeenergyofanatomwithgraphene
_version_ 1724219229820944384