Nanochannel-Controlled Synthesis of Ultrahigh Nitrogen-Doping Efficiency on Mesoporous Fe/N/C Catalysts for Oxygen Reduction Reaction
Abstract Designing appropriate methods to effectively enhance nitrogen-doping efficiency and active-site density is essential to boost the oxygen reduction reaction (ORR) activity of non-platinum Fe/N/C-type electrocatalysts. Here, we propose a facile and effective strategy to design a mesopore-stru...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-01-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1186/s11671-020-3254-x |
Summary: | Abstract Designing appropriate methods to effectively enhance nitrogen-doping efficiency and active-site density is essential to boost the oxygen reduction reaction (ORR) activity of non-platinum Fe/N/C-type electrocatalysts. Here, we propose a facile and effective strategy to design a mesopore-structured Fe/N/C catalyst for the ORR with ultrahigh BET surface area and outstanding conductivity via nanochannels of molecular sieve-confined pyrolysis of Fe2+ ions coordinated with 2,4,6-tri(2-pyridyl)-1,3,5-triazine complexes as a novel precursor with the stable coordination effect. Combining the nanochannel-confined effect with the stable coordination effect can synergistically improve the thermal stability and stabilize the nitrogen-enriched active sites, and help to control the loss of active N atoms during pyrolysis process and to further obtain a high active-site density for enhancing the ORR activity. The as-prepared Fe/N/C electrocatalyst has exhibited excellent catalytic activity with an onset potential of ~ 0.841 V (versus RHE) closely approaching the Pt/C catalyst and high long-term stability in alkaline electrolyte. Besides, low-hydrogen peroxide yield (< 6.5%) and high electron transfer number (3.88–3.94) can be found on this catalyst, indicating that it is a valuable substitute for traditional Pt/C catalysts. This work paves a new way to design high-performance Fe/N/C electrocatalysts and deepens the understanding of active site and ORR catalysis mechanism. |
---|---|
ISSN: | 1931-7573 1556-276X |