Immune Checkpoint Blockade Enhances Immune Activity of Therapeutic Lung Cancer Vaccine

Background: Immune checkpoint blockade that downregulates T cell evasion for effective immunity has provided a renewed interest in therapeutic cancer vaccines. Methods: Utilizing murine lung cancer models, we determined: tumor burden, TIL cytolysis, immunohistochemistry, flow cytometry, RNA Sequenci...

Full description

Bibliographic Details
Main Authors: Pournima Kadam, Ram P. Singh, Michael Davoodi, Jay M. Lee, Maie St. John, Sherven Sharma
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Vaccines
Subjects:
Online Access:https://www.mdpi.com/2076-393X/8/4/655
Description
Summary:Background: Immune checkpoint blockade that downregulates T cell evasion for effective immunity has provided a renewed interest in therapeutic cancer vaccines. Methods: Utilizing murine lung cancer models, we determined: tumor burden, TIL cytolysis, immunohistochemistry, flow cytometry, RNA Sequencing, CD4 T cells, CD8 T cells, CXCL9 chemokine, and CXCL10 chemokine neutralization to evaluate the efficacy of Programmed cell death protein 1 (PD-1) blockade combined with chemokine (C-C motif) ligand 21-dendritic cell tumor antigen (CCL21-DC tumor Ag) vaccine. Results: Anti-PD1 combined with CCL21-DC tumor Ag vaccine eradicated 75% of 12-day established tumors (150 mm<sup>3</sup>) that was enhanced to 90% by administering CCL21-DC tumor Ag vaccine prior to combined therapy. The effect of combined therapy was blocked by CD4, CD8, CXCL9, and CXCL10 neutralizing antibodies. Conclusion: PD-1 blockade therapy plus CCL21-DC tumor Ag vaccine could be beneficial to lung cancer patients.
ISSN:2076-393X