Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer

In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA) in the context of hyperspectral image classification via a geode...

Full description

Bibliographic Details
Main Authors: Alim Samat, Paolo Gamba, Jilili Abuduwaili, Sicong Liu, Zelang Miao
Format: Article
Language:English
Published: MDPI AG 2016-03-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/8/3/234
Description
Summary:In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA) in the context of hyperspectral image classification via a geodesic Gaussian flow kernel based support vector machine (GFKSVM). To show the superior performance of the proposed approach, conventional support vector machines (SVMs) and state-of-the-art DA algorithms, including information-theoretical learning of discriminative cluster for domain adaptation (ITLDC), joint distribution adaptation (JDA), and joint transfer matching (JTM), are also considered. Additionally, unsupervised linear and nonlinear subspace feature transfer techniques including principal component analysis (PCA), randomized nonlinear principal component analysis (rPCA), factor analysis (FA) and non-negative matrix factorization (NNMF) are investigated and compared. Experiments on two real hyperspectral images show the cross-image classification performances of the GFKSVM, confirming its effectiveness and suitability when applied to hyperspectral images.
ISSN:2072-4292