Metabolomics Analysis Reveals Tissue-Specific Metabolite Compositions in Leaf Blade and Traps of Carnivorous <i>Nepenthes</i> Plants

<i>Nepenthes</i> is a genus of carnivorous plants that evolved a pitfall trap, the pitcher, to catch and digest insect prey to obtain additional nutrients. Each pitcher is part of the whole leaf, together with a leaf blade. These two completely different parts of the same organ were stud...

Full description

Bibliographic Details
Main Authors: Alberto Dávila-Lara, Carlos E. Rodríguez-López, Sarah E. O’Connor, Axel Mithöfer
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/12/4376
Description
Summary:<i>Nepenthes</i> is a genus of carnivorous plants that evolved a pitfall trap, the pitcher, to catch and digest insect prey to obtain additional nutrients. Each pitcher is part of the whole leaf, together with a leaf blade. These two completely different parts of the same organ were studied separately in a non-targeted metabolomics approach in <i>Nepenthes x ventrata, </i>a robust natural hybrid. The first aim was the analysis and profiling of small (50–1000 <i>m/z</i>) polar and non-polar molecules to find a characteristic metabolite pattern for the particular tissues. Second, the impact of insect feeding on the metabolome of the pitcher and leaf blade was studied. Using UPLC-ESI-qTOF and cheminformatics, about 2000 features (MS/MS events) were detected in the two tissues. They showed a huge chemical diversity, harboring classes of chemical substances that significantly discriminate these tissues. Among the common constituents of <i>N. x ventrata</i> are phenolics, flavonoids and naphthoquinones, namely plumbagin, a characteristic compound for carnivorous Nepenthales, and many yet-unknown compounds. Upon insect feeding, only in pitchers in the polar compounds fraction, small but significant differences could be detected. By further integrating information with cheminformatics approaches, we provide and discuss evidence that the metabolite composition of the tissues can point to their function.
ISSN:1661-6596
1422-0067