Summary: | Intensive research on photoacoustics (PA) for imaging of the living human body, including the skin, vessels, and tumors, has recently been conducted. We propose a PA measurement system based on a capacitive micromachined ultrasonic transducer (CMUT) with waterless coupling, short measurement time (<1 s), backward light irradiation, and a low-profile ultrasonic receiver unit (<1 cm). We fabricate a 64-element CMUT ring array with 6.2 mm diameter and 10.4 MHz center frequency in air, and 100% yield and uniform element response. To validate the PA tissue characterization, we employ pencil lead and red ink as solid and liquid models, respectively, and a living body to target moles and vessels. The system implements a near-field imaging system consisting of a 6 mm polydimethylsiloxane (PDMS) matching layer between the object and CMUT, which has a 3.7 MHz center frequency in PDMS. Experiments were performed in a waterless contact on the PDMS and the laser was irradiated with a 1 cm diameter. The experimental results show the feasibility of this near-field PA imaging system for position and depth detection of skin, mole, vessel cells, etc. Therefore, a system applicable to a low-profile compact biomedical device is presented.
|