Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>

<p>Abstract</p> <p>Background</p> <p>Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the questio...

Full description

Bibliographic Details
Main Authors: Barton Robert A, Capellini Isabella, Montgomery Stephen H, Mundy Nicholas I
Format: Article
Language:English
Published: BMC 2010-01-01
Series:BMC Biology
Online Access:http://www.biomedcentral.com/1741-7007/8/9
id doaj-a1994edd94d443638a78307b19b78423
record_format Article
spelling doaj-a1994edd94d443638a78307b19b784232020-11-24T20:49:15ZengBMCBMC Biology1741-70072010-01-0181910.1186/1741-7007-8-9Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>Barton Robert ACapellini IsabellaMontgomery Stephen HMundy Nicholas I<p>Abstract</p> <p>Background</p> <p>Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question.</p> <p>Results</p> <p>We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass) using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of <it>Homo floresiensis</it>, we find a number of scenarios under which the proposed evolution of <it>Homo floresiensis' </it>small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position.</p> <p>Conclusions</p> <p>Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of <it>Homo floresiensis </it>and better body mass estimates are required to confirm the plausibility of the evolution of its small brain mass. We find that for our dataset the Bayesian analysis for ancestral state reconstruction is least affected by inclusion of fossil data suggesting that this approach might be preferable for future studies on other taxa with a poor fossil record.</p> http://www.biomedcentral.com/1741-7007/8/9
collection DOAJ
language English
format Article
sources DOAJ
author Barton Robert A
Capellini Isabella
Montgomery Stephen H
Mundy Nicholas I
spellingShingle Barton Robert A
Capellini Isabella
Montgomery Stephen H
Mundy Nicholas I
Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>
BMC Biology
author_facet Barton Robert A
Capellini Isabella
Montgomery Stephen H
Mundy Nicholas I
author_sort Barton Robert A
title Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>
title_short Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>
title_full Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>
title_fullStr Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>
title_full_unstemmed Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>Homo floresiensis</it>
title_sort reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and <it>homo floresiensis</it>
publisher BMC
series BMC Biology
issn 1741-7007
publishDate 2010-01-01
description <p>Abstract</p> <p>Background</p> <p>Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question.</p> <p>Results</p> <p>We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass) using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of <it>Homo floresiensis</it>, we find a number of scenarios under which the proposed evolution of <it>Homo floresiensis' </it>small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position.</p> <p>Conclusions</p> <p>Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of <it>Homo floresiensis </it>and better body mass estimates are required to confirm the plausibility of the evolution of its small brain mass. We find that for our dataset the Bayesian analysis for ancestral state reconstruction is least affected by inclusion of fossil data suggesting that this approach might be preferable for future studies on other taxa with a poor fossil record.</p>
url http://www.biomedcentral.com/1741-7007/8/9
work_keys_str_mv AT bartonroberta reconstructingtheupsanddownsofprimatebrainevolutionimplicationsforadaptivehypothesesandithomofloresiensisit
AT capelliniisabella reconstructingtheupsanddownsofprimatebrainevolutionimplicationsforadaptivehypothesesandithomofloresiensisit
AT montgomerystephenh reconstructingtheupsanddownsofprimatebrainevolutionimplicationsforadaptivehypothesesandithomofloresiensisit
AT mundynicholasi reconstructingtheupsanddownsofprimatebrainevolutionimplicationsforadaptivehypothesesandithomofloresiensisit
_version_ 1716806228188856320