Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation

Reasonable design of the overburden thickness of underground space (OTUS) can influence the outdoor thermal environment by affecting the ground plant communities. To optimize the design of the OTUS for improving the outdoor thermal environment, this study summarized the influence mechanism of the OT...

Full description

Bibliographic Details
Main Authors: Xiaochao Su, Zhilong Chen, Xudong Zhao, Xiaobin Yang, Qilin Feng, Haizhou Tang
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Sustainability
Subjects:
Online Access:http://www.mdpi.com/2071-1050/10/9/3205
Description
Summary:Reasonable design of the overburden thickness of underground space (OTUS) can influence the outdoor thermal environment by affecting the ground plant communities. To optimize the design of the OTUS for improving the outdoor thermal environment, this study summarized the influence mechanism of the OTUS on the outdoor thermal environment and proposed a framework of the optimization design of underground space overburden thickness. A typical row layout residential area in Nanjing, China, was taken as the research object on which to perform a numerical study of the influence of plant communities formed by two types of plant collocations (a middle- and low-level plant collocation and a middle- and high-level plant collocation) on the outdoor thermal environment (airflow field, air temperature, relative humidity and thermal comfort) under three different ratios of trees to shrubs (2:3, 1:2, and 1:3), and to provide suggestions regarding the design of the OTUS according to the designer’s requirements. The conclusions were summarized as follows: (1) If a designer wants to enhance outdoor ventilation, the OTUS should be designed to satisfy the requirements for the middle- and low-level plant collocations and the overburden thickness of the 2/5 underground space development area should be set to 80~100 cm, the overburden thickness of the other 2/5 area should be set to 45~60 cm and the overburden thickness of the remaining 1/5 area should be set to 30~45 cm. (2) If a designer wants to reduce air temperature, increase relative humidity, and improve outdoor thermal comfort, the OTUS should be designed to satisfy the requirements for middle- and high-level plant collocations and the overburden thickness of the 1/4 underground space development area should be set to 80~100 cm, and the overburden thickness of the remaining 3/4 area should be set to 45~60 cm.
ISSN:2071-1050