Peut-on cartographier des taches urbaines à partir d’images Google Earth ?

The presented study shows the results of the processing of Google Earth images leading to the delineation of West Africa urban areas with more than 500 000 inhabitants. Since Google Earth images are RGB images with no spectral information, the developed methodology is based on the processing of grey...

Full description

Bibliographic Details
Main Authors: Johanna Baro, Catherine Mering, Corinne Vachier
Format: Article
Language:deu
Published: Unité Mixte de Recherche 8504 Géographie-cités 2014-07-01
Series:Cybergeo
Subjects:
Online Access:http://journals.openedition.org/cybergeo/26401
id doaj-a1dbbda2be7644e4bf1da8e8205bde36
record_format Article
spelling doaj-a1dbbda2be7644e4bf1da8e8205bde362021-10-05T13:21:08ZdeuUnité Mixte de Recherche 8504 Géographie-citésCybergeo1278-33662014-07-0110.4000/cybergeo.26401Peut-on cartographier des taches urbaines à partir d’images Google Earth ?Johanna BaroCatherine MeringCorinne VachierThe presented study shows the results of the processing of Google Earth images leading to the delineation of West Africa urban areas with more than 500 000 inhabitants. Since Google Earth images are RGB images with no spectral information, the developed methodology is based on the processing of grey level images in order to retrieve urban areas according to their texture with the help of morphological filters. Images covering some of the studied agglomerations are mosaic images resulting of the composition of satellite images acquired in different conditions. Thus a pre-processing step of image equalization is added in order to reduce the luminance differences and facilitate the extraction. We present here an equalization method based on the « Midway » algorithm, originally developed to standardize the luminance of pairs of stereo images. The challenge here is to adapt the algorithm to be able to treat images with partially different contents. Once the mosaics are equalized, it is possible to use sequences of morphological filters in order to delineate urban areas. The results are compared and validated with the Africapolis vectorial database of urban areas identified by mean of photo interpretation, as well on Google Earth images.http://journals.openedition.org/cybergeo/26401Google Earthmathematical morphologyurban delineationremote sensingbuilt environment
collection DOAJ
language deu
format Article
sources DOAJ
author Johanna Baro
Catherine Mering
Corinne Vachier
spellingShingle Johanna Baro
Catherine Mering
Corinne Vachier
Peut-on cartographier des taches urbaines à partir d’images Google Earth ?
Cybergeo
Google Earth
mathematical morphology
urban delineation
remote sensing
built environment
author_facet Johanna Baro
Catherine Mering
Corinne Vachier
author_sort Johanna Baro
title Peut-on cartographier des taches urbaines à partir d’images Google Earth ?
title_short Peut-on cartographier des taches urbaines à partir d’images Google Earth ?
title_full Peut-on cartographier des taches urbaines à partir d’images Google Earth ?
title_fullStr Peut-on cartographier des taches urbaines à partir d’images Google Earth ?
title_full_unstemmed Peut-on cartographier des taches urbaines à partir d’images Google Earth ?
title_sort peut-on cartographier des taches urbaines à partir d’images google earth ?
publisher Unité Mixte de Recherche 8504 Géographie-cités
series Cybergeo
issn 1278-3366
publishDate 2014-07-01
description The presented study shows the results of the processing of Google Earth images leading to the delineation of West Africa urban areas with more than 500 000 inhabitants. Since Google Earth images are RGB images with no spectral information, the developed methodology is based on the processing of grey level images in order to retrieve urban areas according to their texture with the help of morphological filters. Images covering some of the studied agglomerations are mosaic images resulting of the composition of satellite images acquired in different conditions. Thus a pre-processing step of image equalization is added in order to reduce the luminance differences and facilitate the extraction. We present here an equalization method based on the « Midway » algorithm, originally developed to standardize the luminance of pairs of stereo images. The challenge here is to adapt the algorithm to be able to treat images with partially different contents. Once the mosaics are equalized, it is possible to use sequences of morphological filters in order to delineate urban areas. The results are compared and validated with the Africapolis vectorial database of urban areas identified by mean of photo interpretation, as well on Google Earth images.
topic Google Earth
mathematical morphology
urban delineation
remote sensing
built environment
url http://journals.openedition.org/cybergeo/26401
work_keys_str_mv AT johannabaro peutoncartographierdestachesurbainesapartirdimagesgoogleearth
AT catherinemering peutoncartographierdestachesurbainesapartirdimagesgoogleearth
AT corinnevachier peutoncartographierdestachesurbainesapartirdimagesgoogleearth
_version_ 1716841831727104000