Wastewater Contaminated with Hydrazine as Scavenger Agent for Hydrogen Production by Cu/Ti Nanostructures

Cu/Ti photocatalysts were prepared by the sol-gel process with different copper loadings (1.0, 2.5, and 5.0 wt.%) and then thermally treated at several calcination temperatures from 400 to 600 °C. The materials were characterized by X-ray diffraction (XRD), N<sub>2</sub> physisorption, S...

Full description

Bibliographic Details
Main Authors: Mariana Hinojosa Reyes, Roberto Camposeco, Vicente Rodríguez González
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/1/74
Description
Summary:Cu/Ti photocatalysts were prepared by the sol-gel process with different copper loadings (1.0, 2.5, and 5.0 wt.%) and then thermally treated at several calcination temperatures from 400 to 600 °C. The materials were characterized by X-ray diffraction (XRD), N<sub>2</sub> physisorption, Scanning Electronic Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDS), Ultraviolet-visible-Diffuse Reflection Spectroscopy, Ultraviolet-visible spectroscopy as a function of the temperature, (Temperature Programmed Reduction) TPR-chemisorption, XPS (X-ray Photoelectron Spectroscopy) and OH determination through DRIFTS (Diffuse reflectance infrared Fourier transform spectroscopy). The Cu/Ti photocatalysts were evaluated for the photocatalytic production of hydrogen using hydrazine as scavenging agent. Moreover, a detailed study of the Cu<sup>1+</sup>/Cu<sup>2+</sup> ratio and the corresponding formation of copper oxide was carried out to understand the correlation between the copper species and the photocatalytic activity. Simultaneously, the OH groups on the TiO<sub>2</sub> surface also show insights into the behavior of these materials during the photocatalytic reaction. Despite the low hydrazine concentration (20 mM), the 1.0 (wt.%) Cu/Ti 500 photocatalyst enhanced the hydrogen production three and two times more than photolysis and bare TiO<sub>2</sub>, respectively. The 1.0 Cu/Ti 500 photocatalyst displayed outstanding stability for at least three continuous cycles of 8 h each, preserving the hydrogen production. The novel ability shown in this work represents an alternative to reduce the hydrazine residues in wastewater to transform it into a hydrogen-producing energy source and must be extended to other reductive pollutants found in wastewater.
ISSN:2073-4344