Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes

<p>Airglow spectrometers, as they are operated within the Network for the Detection of Mesospheric Change (NDMC; <span class="uri">https://ndmc.dlr.de</span>, last access: 1 November 2020), for example, allow the derivation of rotational temperatures which are equivalent...

Full description

Bibliographic Details
Main Authors: S. Wüst, M. Bittner, J.-H. Yee, M. G. Mlynczak, J. M. Russell III
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/13/6067/2020/amt-13-6067-2020.pdf
id doaj-a2b130568bf64f00a5cdc798d86375d6
record_format Article
spelling doaj-a2b130568bf64f00a5cdc798d86375d62020-11-25T04:03:44ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-11-01136067609310.5194/amt-13-6067-2020Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudesS. Wüst0M. Bittner1M. Bittner2J.-H. Yee3M. G. Mlynczak4J. M. Russell III5Deutsches Fernerkundungsdatenzentrum, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, GermanyDeutsches Fernerkundungsdatenzentrum, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, GermanyInstitut für Physik, Universität Augsburg, Augsburg, GermanyApplied Physics Laboratory, Johns Hopkins University, Laurel, MD, USANASA Langley Research Center, Hampton, VA, USACenter for Atmospheric Sciences, Hampton, VA, USA<p>Airglow spectrometers, as they are operated within the Network for the Detection of Mesospheric Change (NDMC; <span class="uri">https://ndmc.dlr.de</span>, last access: 1 November 2020), for example, allow the derivation of rotational temperatures which are equivalent to the kinetic temperature, local thermodynamic equilibrium provided. Temperature variations at the height of the airglow layer are, amongst others, caused by gravity waves. However, airglow spectrometers do not deliver vertically resolved temperature information. This is an obstacle for the calculation of the density of gravity wave potential energy from these measurements.</p> <p>As Wüst et al. (2016) showed, the density of wave potential energy can be estimated from data of <span class="inline-formula">OH<sup>∗</sup></span>-airglow spectrometers if co-located TIMED-SABER (Thermosphere Ionosphere Mesosphere Energetics Dynamics, Sounding of the Atmosphere using Broadband Emission Radiometry) measurements are available, since they allow the calculation of the Brunt–Väisälä frequency. If co-located measurements are not available, a climatology of the Brunt–Väisälä frequency is an alternative. Based on 17 years of TIMED-SABER temperature data (2002–2018), such a climatology is provided here for the <span class="inline-formula">OH<sup>∗</sup></span>-airglow layer height and for a latitudinal longitudinal grid of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">10</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">20</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="8cc1678b0c8faba51e8678dc28d177c9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6067-2020-ie00001.svg" width="46pt" height="11pt" src="amt-13-6067-2020-ie00001.png"/></svg:svg></span></span> at midlatitudes and low latitudes. Additionally, climatologies of height and thickness of the <span class="inline-formula">OH<sup>∗</sup></span>-airglow layer are calculated.</p>https://amt.copernicus.org/articles/13/6067/2020/amt-13-6067-2020.pdf
collection DOAJ
language English
format Article
sources DOAJ
author S. Wüst
M. Bittner
M. Bittner
J.-H. Yee
M. G. Mlynczak
J. M. Russell III
spellingShingle S. Wüst
M. Bittner
M. Bittner
J.-H. Yee
M. G. Mlynczak
J. M. Russell III
Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes
Atmospheric Measurement Techniques
author_facet S. Wüst
M. Bittner
M. Bittner
J.-H. Yee
M. G. Mlynczak
J. M. Russell III
author_sort S. Wüst
title Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes
title_short Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes
title_full Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes
title_fullStr Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes
title_full_unstemmed Variability of the Brunt–Väisälä frequency at the OH<sup>∗</sup>-airglow layer height at low and midlatitudes
title_sort variability of the brunt–väisälä frequency at the oh<sup>∗</sup>-airglow layer height at low and midlatitudes
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2020-11-01
description <p>Airglow spectrometers, as they are operated within the Network for the Detection of Mesospheric Change (NDMC; <span class="uri">https://ndmc.dlr.de</span>, last access: 1 November 2020), for example, allow the derivation of rotational temperatures which are equivalent to the kinetic temperature, local thermodynamic equilibrium provided. Temperature variations at the height of the airglow layer are, amongst others, caused by gravity waves. However, airglow spectrometers do not deliver vertically resolved temperature information. This is an obstacle for the calculation of the density of gravity wave potential energy from these measurements.</p> <p>As Wüst et al. (2016) showed, the density of wave potential energy can be estimated from data of <span class="inline-formula">OH<sup>∗</sup></span>-airglow spectrometers if co-located TIMED-SABER (Thermosphere Ionosphere Mesosphere Energetics Dynamics, Sounding of the Atmosphere using Broadband Emission Radiometry) measurements are available, since they allow the calculation of the Brunt–Väisälä frequency. If co-located measurements are not available, a climatology of the Brunt–Väisälä frequency is an alternative. Based on 17 years of TIMED-SABER temperature data (2002–2018), such a climatology is provided here for the <span class="inline-formula">OH<sup>∗</sup></span>-airglow layer height and for a latitudinal longitudinal grid of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">10</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">20</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="8cc1678b0c8faba51e8678dc28d177c9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6067-2020-ie00001.svg" width="46pt" height="11pt" src="amt-13-6067-2020-ie00001.png"/></svg:svg></span></span> at midlatitudes and low latitudes. Additionally, climatologies of height and thickness of the <span class="inline-formula">OH<sup>∗</sup></span>-airglow layer are calculated.</p>
url https://amt.copernicus.org/articles/13/6067/2020/amt-13-6067-2020.pdf
work_keys_str_mv AT swust variabilityofthebruntvaisalafrequencyattheohsupsupairglowlayerheightatlowandmidlatitudes
AT mbittner variabilityofthebruntvaisalafrequencyattheohsupsupairglowlayerheightatlowandmidlatitudes
AT mbittner variabilityofthebruntvaisalafrequencyattheohsupsupairglowlayerheightatlowandmidlatitudes
AT jhyee variabilityofthebruntvaisalafrequencyattheohsupsupairglowlayerheightatlowandmidlatitudes
AT mgmlynczak variabilityofthebruntvaisalafrequencyattheohsupsupairglowlayerheightatlowandmidlatitudes
AT jmrusselliii variabilityofthebruntvaisalafrequencyattheohsupsupairglowlayerheightatlowandmidlatitudes
_version_ 1724439468419579904