Joint Adaptive Coding and Reversible Data Hiding for AMBTC Compressed Images

This paper proposes a joint coding and reversible data hiding method for absolute moment block truncation coding (AMBTC) compressed images. Existing methods use a predictor to predict the quantization levels of AMBTC codes. Equal-length indicators, secret bits and prediction errors are concatenated...

Full description

Bibliographic Details
Main Authors: Wien Hong, Xiaoyu Zhou, Shaowei Weng
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/10/7/254
Description
Summary:This paper proposes a joint coding and reversible data hiding method for absolute moment block truncation coding (AMBTC) compressed images. Existing methods use a predictor to predict the quantization levels of AMBTC codes. Equal-length indicators, secret bits and prediction errors are concatenated to construct the output code stream. However, the quantization levels might not highly correlate with their neighbors for predictive coding, and the use of equal-length indicators might impede the coding efficiency. The proposed method uses reversible integer transform to represent the quantization levels by their means and differences, which is advantageous for predictive coding. Moreover, the prediction errors are better classified into symmetrical encoding cases using the adaptive classification technique. The length of indicators and the bits representing the prediction errors are properly assigned according to the classified results. Experiments show that the proposed method offers the lowest bitrate for a variety of images when compared with the existing state-of-the-art works.
ISSN:2073-8994