W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients

<span style="font-family: DejaVu Sans,sans-serif;">We prove a well-posedness result in the intersection class of <em>W</em><sup><em>2,p </em></sup>with <em>W</em><sub><em>0</em></sub><sup><em>1,p</...

Full description

Bibliographic Details
Main Author: Carmela Vitanza
Format: Article
Language:English
Published: Università degli Studi di Catania 1992-05-01
Series:Le Matematiche
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/581
Description
Summary:<span style="font-family: DejaVu Sans,sans-serif;">We prove a well-posedness result in the intersection class of <em>W</em><sup><em>2,p </em></sup>with <em>W</em><sub><em>0</em></sub><sup><em>1,p</em></sup> for the Dirichlet problem (*) below. We assume <em>L</em> to be an elliptic second order operator with discontinuous coefficients and lower order terms. The paper extends a recent result (see [1], [2]) for operators restricted to leading terms.</span>
ISSN:0373-3505
2037-5298