Rapid Mitochondrial DNA Segregation in Primate Preimplantation Embryos Precedes Somatic and Germline Bottleneck

The timing and mechanisms of mitochondrial DNA (mtDNA) segregation and transmission in mammals are poorly understood. Genetic bottleneck in female germ cells has been proposed as the main phenomenon responsible for rapid intergenerational segregation of heteroplasmic mtDNA. We demonstrate here that...

Full description

Bibliographic Details
Main Authors: Hyo-Sang Lee, Hong Ma, Rita Cervera Juanes, Masahito Tachibana, Michelle Sparman, Joy Woodward, Cathy Ramsey, Jing Xu, Eun-Ju Kang, Paula Amato, Georg Mair, Ralf Steinborn, Shoukhrat Mitalipov
Format: Article
Language:English
Published: Elsevier 2012-05-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124712000964
Description
Summary:The timing and mechanisms of mitochondrial DNA (mtDNA) segregation and transmission in mammals are poorly understood. Genetic bottleneck in female germ cells has been proposed as the main phenomenon responsible for rapid intergenerational segregation of heteroplasmic mtDNA. We demonstrate here that mtDNA segregation occurs during primate preimplantation embryogenesis resulting in partitioning of mtDNA variants between daughter blastomeres. A substantial shift toward homoplasmy occurred in fetuses and embryonic stem cells (ESCs) derived from these heteroplasmic embryos. We also observed a wide range of heteroplasmic mtDNA variants distributed in individual oocytes recovered from these fetuses. Thus, we present here evidence for a previously unknown mtDNA segregation and bottleneck during preimplantation embryo development, suggesting that return to the homoplasmic condition can occur during development of an individual organism from the zygote to birth, without a passage through the germline.
ISSN:2211-1247