On the smallest singular value in the class of unit lower triangular matrices with entries in [−a, a]
Given a real number a ≥ 1, let Kn(a) be the set of all n × n unit lower triangular matrices with each element in the interval [−a, a]. Denoting by λn(·) the smallest eigenvalue of a given matrix, let cn(a) = min {λ n(YYT) : Y ∈ Kn(a)}. Then cn(a)\sqrt {{c_n}\left( a \right)} is the smallest singular...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2021-06-01
|
Series: | Special Matrices |
Subjects: | |
Online Access: | https://doi.org/10.1515/spma-2020-0139 |