Baseline Methods for Bayesian Inference in Gumbel Distribution
Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an ex...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/22/11/1267 |
id |
doaj-a40076f51fcb4a82bd6f0a2a08d49864 |
---|---|
record_format |
Article |
spelling |
doaj-a40076f51fcb4a82bd6f0a2a08d498642020-11-25T04:08:31ZengMDPI AGEntropy1099-43002020-11-01221267126710.3390/e22111267Baseline Methods for Bayesian Inference in Gumbel DistributionJacinto Martín0María Isabel Parra1Mario Martínez Pizarro2Eva L. Sanjuán3Departamento de Matemáticas, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, SpainDepartamento de Matemáticas, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, SpainDepartamento de Matemáticas, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, SpainDepartamento de Matemáticas, Centro Universitario de Mérida, Universidad de Extremadura, 06800 Mérida, SpainUsual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study.https://www.mdpi.com/1099-4300/22/11/1267Bayesian inferencehighly informative priorgumbel distributionsmall dataset |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jacinto Martín María Isabel Parra Mario Martínez Pizarro Eva L. Sanjuán |
spellingShingle |
Jacinto Martín María Isabel Parra Mario Martínez Pizarro Eva L. Sanjuán Baseline Methods for Bayesian Inference in Gumbel Distribution Entropy Bayesian inference highly informative prior gumbel distribution small dataset |
author_facet |
Jacinto Martín María Isabel Parra Mario Martínez Pizarro Eva L. Sanjuán |
author_sort |
Jacinto Martín |
title |
Baseline Methods for Bayesian Inference in Gumbel Distribution |
title_short |
Baseline Methods for Bayesian Inference in Gumbel Distribution |
title_full |
Baseline Methods for Bayesian Inference in Gumbel Distribution |
title_fullStr |
Baseline Methods for Bayesian Inference in Gumbel Distribution |
title_full_unstemmed |
Baseline Methods for Bayesian Inference in Gumbel Distribution |
title_sort |
baseline methods for bayesian inference in gumbel distribution |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2020-11-01 |
description |
Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study. |
topic |
Bayesian inference highly informative prior gumbel distribution small dataset |
url |
https://www.mdpi.com/1099-4300/22/11/1267 |
work_keys_str_mv |
AT jacintomartin baselinemethodsforbayesianinferenceingumbeldistribution AT mariaisabelparra baselinemethodsforbayesianinferenceingumbeldistribution AT mariomartinezpizarro baselinemethodsforbayesianinferenceingumbeldistribution AT evalsanjuan baselinemethodsforbayesianinferenceingumbeldistribution |
_version_ |
1724425354433527808 |