Baseline Methods for Bayesian Inference in Gumbel Distribution

Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an ex...

Full description

Bibliographic Details
Main Authors: Jacinto Martín, María Isabel Parra, Mario Martínez Pizarro, Eva L. Sanjuán
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/11/1267
id doaj-a40076f51fcb4a82bd6f0a2a08d49864
record_format Article
spelling doaj-a40076f51fcb4a82bd6f0a2a08d498642020-11-25T04:08:31ZengMDPI AGEntropy1099-43002020-11-01221267126710.3390/e22111267Baseline Methods for Bayesian Inference in Gumbel DistributionJacinto Martín0María Isabel Parra1Mario Martínez Pizarro2Eva L. Sanjuán3Departamento de Matemáticas, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, SpainDepartamento de Matemáticas, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, SpainDepartamento de Matemáticas, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, SpainDepartamento de Matemáticas, Centro Universitario de Mérida, Universidad de Extremadura, 06800 Mérida, SpainUsual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study.https://www.mdpi.com/1099-4300/22/11/1267Bayesian inferencehighly informative priorgumbel distributionsmall dataset
collection DOAJ
language English
format Article
sources DOAJ
author Jacinto Martín
María Isabel Parra
Mario Martínez Pizarro
Eva L. Sanjuán
spellingShingle Jacinto Martín
María Isabel Parra
Mario Martínez Pizarro
Eva L. Sanjuán
Baseline Methods for Bayesian Inference in Gumbel Distribution
Entropy
Bayesian inference
highly informative prior
gumbel distribution
small dataset
author_facet Jacinto Martín
María Isabel Parra
Mario Martínez Pizarro
Eva L. Sanjuán
author_sort Jacinto Martín
title Baseline Methods for Bayesian Inference in Gumbel Distribution
title_short Baseline Methods for Bayesian Inference in Gumbel Distribution
title_full Baseline Methods for Bayesian Inference in Gumbel Distribution
title_fullStr Baseline Methods for Bayesian Inference in Gumbel Distribution
title_full_unstemmed Baseline Methods for Bayesian Inference in Gumbel Distribution
title_sort baseline methods for bayesian inference in gumbel distribution
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2020-11-01
description Usual estimation methods for the parameters of extreme value distributions only employ a small part of the observation values. When block maxima values are considered, many data are discarded, and therefore a lot of information is wasted. We develop a model to seize the whole data available in an extreme value framework. The key is to take advantage of the existing relation between the baseline parameters and the parameters of the block maxima distribution. We propose two methods to perform Bayesian estimation. Baseline distribution method (BDM) consists in computing estimations for the baseline parameters with all the data, and then making a transformation to compute estimations for the block maxima parameters. Improved baseline method (IBDM) is a refinement of the initial idea, with the aim of assigning more importance to the block maxima data than to the baseline values, performed by applying BDM to develop an improved prior distribution. We compare empirically these new methods with the Standard Bayesian analysis with non-informative prior, considering three baseline distributions that lead to a Gumbel extreme distribution, namely Gumbel, Exponential and Normal, by a broad simulation study.
topic Bayesian inference
highly informative prior
gumbel distribution
small dataset
url https://www.mdpi.com/1099-4300/22/11/1267
work_keys_str_mv AT jacintomartin baselinemethodsforbayesianinferenceingumbeldistribution
AT mariaisabelparra baselinemethodsforbayesianinferenceingumbeldistribution
AT mariomartinezpizarro baselinemethodsforbayesianinferenceingumbeldistribution
AT evalsanjuan baselinemethodsforbayesianinferenceingumbeldistribution
_version_ 1724425354433527808