Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis.
Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an int...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22272225/?tool=EBI |
id |
doaj-a438262b7094474a88ff7673445cd740 |
---|---|
record_format |
Article |
spelling |
doaj-a438262b7094474a88ff7673445cd7402021-03-03T20:30:41ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0171e2869410.1371/journal.pone.0028694Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis.Yara ReisMarti Bernardo-FauraDaniela RichterThomas WolfBenedikt BrorsAnne Hamacher-BradyRoland EilsNathan R BradyMitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22272225/?tool=EBI |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yara Reis Marti Bernardo-Faura Daniela Richter Thomas Wolf Benedikt Brors Anne Hamacher-Brady Roland Eils Nathan R Brady |
spellingShingle |
Yara Reis Marti Bernardo-Faura Daniela Richter Thomas Wolf Benedikt Brors Anne Hamacher-Brady Roland Eils Nathan R Brady Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. PLoS ONE |
author_facet |
Yara Reis Marti Bernardo-Faura Daniela Richter Thomas Wolf Benedikt Brors Anne Hamacher-Brady Roland Eils Nathan R Brady |
author_sort |
Yara Reis |
title |
Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. |
title_short |
Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. |
title_full |
Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. |
title_fullStr |
Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. |
title_full_unstemmed |
Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. |
title_sort |
multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2012-01-01 |
description |
Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. |
url |
https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22272225/?tool=EBI |
work_keys_str_mv |
AT yarareis multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT martibernardofaura multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT danielarichter multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT thomaswolf multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT benediktbrors multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT annehamacherbrady multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT rolandeils multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis AT nathanrbrady multiparametricanalysisandmodelingofrelationshipsbetweenmitochondrialmorphologyandapoptosis |
_version_ |
1714822169491406848 |