Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi

Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immu...

Full description

Bibliographic Details
Main Authors: Carlos Talavera-López, Louisa A. Messenger, Michael D. Lewis, Matthew Yeo, João Luís Reis-Cunha, Gabriel Machado Matos, Daniella C. Bartholomeu, José E. Calzada, Azael Saldaña, Juan David Ramírez, Felipe Guhl, Sofía Ocaña-Mayorga, Jaime A. Costales, Rodion Gorchakov, Kathryn Jones, Melissa S. Nolan, Santuza M. R. Teixeira, Hernán José Carrasco, Maria Elena Bottazzi, Peter J. Hotez, Kristy O. Murray, Mario J. Grijalva, Barbara Burleigh, Edmundo C. Grisard, Michael A. Miles, Björn Andersson
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-03-01
Series:Frontiers in Cellular and Infection Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcimb.2021.614665/full
id doaj-a4cd59512a324280b349602a5bf83648
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Carlos Talavera-López
Carlos Talavera-López
Louisa A. Messenger
Michael D. Lewis
Matthew Yeo
João Luís Reis-Cunha
Gabriel Machado Matos
Daniella C. Bartholomeu
José E. Calzada
Azael Saldaña
Juan David Ramírez
Felipe Guhl
Sofía Ocaña-Mayorga
Jaime A. Costales
Rodion Gorchakov
Kathryn Jones
Melissa S. Nolan
Santuza M. R. Teixeira
Hernán José Carrasco
Maria Elena Bottazzi
Peter J. Hotez
Kristy O. Murray
Mario J. Grijalva
Mario J. Grijalva
Barbara Burleigh
Edmundo C. Grisard
Michael A. Miles
Björn Andersson
spellingShingle Carlos Talavera-López
Carlos Talavera-López
Louisa A. Messenger
Michael D. Lewis
Matthew Yeo
João Luís Reis-Cunha
Gabriel Machado Matos
Daniella C. Bartholomeu
José E. Calzada
Azael Saldaña
Juan David Ramírez
Felipe Guhl
Sofía Ocaña-Mayorga
Jaime A. Costales
Rodion Gorchakov
Kathryn Jones
Melissa S. Nolan
Santuza M. R. Teixeira
Hernán José Carrasco
Maria Elena Bottazzi
Peter J. Hotez
Kristy O. Murray
Mario J. Grijalva
Mario J. Grijalva
Barbara Burleigh
Edmundo C. Grisard
Michael A. Miles
Björn Andersson
Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi
Frontiers in Cellular and Infection Microbiology
Trypanosoma cruzi
genome sequence
antigenic variation
population genetics
parasitology
microbial genomics
author_facet Carlos Talavera-López
Carlos Talavera-López
Louisa A. Messenger
Michael D. Lewis
Matthew Yeo
João Luís Reis-Cunha
Gabriel Machado Matos
Daniella C. Bartholomeu
José E. Calzada
Azael Saldaña
Juan David Ramírez
Felipe Guhl
Sofía Ocaña-Mayorga
Jaime A. Costales
Rodion Gorchakov
Kathryn Jones
Melissa S. Nolan
Santuza M. R. Teixeira
Hernán José Carrasco
Maria Elena Bottazzi
Peter J. Hotez
Kristy O. Murray
Mario J. Grijalva
Mario J. Grijalva
Barbara Burleigh
Edmundo C. Grisard
Michael A. Miles
Björn Andersson
author_sort Carlos Talavera-López
title Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi
title_short Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi
title_full Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi
title_fullStr Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi
title_full_unstemmed Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi
title_sort repeat-driven generation of antigenic diversity in a major human pathogen, trypanosoma cruzi
publisher Frontiers Media S.A.
series Frontiers in Cellular and Infection Microbiology
issn 2235-2988
publishDate 2021-03-01
description Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
topic Trypanosoma cruzi
genome sequence
antigenic variation
population genetics
parasitology
microbial genomics
url https://www.frontiersin.org/articles/10.3389/fcimb.2021.614665/full
work_keys_str_mv AT carlostalaveralopez repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT carlostalaveralopez repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT louisaamessenger repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT michaeldlewis repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT matthewyeo repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT joaoluisreiscunha repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT gabrielmachadomatos repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT daniellacbartholomeu repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT joseecalzada repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT azaelsaldana repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT juandavidramirez repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT felipeguhl repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT sofiaocanamayorga repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT jaimeacostales repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT rodiongorchakov repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT kathrynjones repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT melissasnolan repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT santuzamrteixeira repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT hernanjosecarrasco repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT mariaelenabottazzi repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT peterjhotez repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT kristyomurray repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT mariojgrijalva repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT mariojgrijalva repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT barbaraburleigh repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT edmundocgrisard repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT michaelamiles repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
AT bjornandersson repeatdrivengenerationofantigenicdiversityinamajorhumanpathogentrypanosomacruzi
_version_ 1724233359801974784
spelling doaj-a4cd59512a324280b349602a5bf836482021-03-03T05:09:02ZengFrontiers Media S.A.Frontiers in Cellular and Infection Microbiology2235-29882021-03-011110.3389/fcimb.2021.614665614665Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruziCarlos Talavera-López0Carlos Talavera-López1Louisa A. Messenger2Michael D. Lewis3Matthew Yeo4João Luís Reis-Cunha5Gabriel Machado Matos6Daniella C. Bartholomeu7José E. Calzada8Azael Saldaña9Juan David Ramírez10Felipe Guhl11Sofía Ocaña-Mayorga12Jaime A. Costales13Rodion Gorchakov14Kathryn Jones15Melissa S. Nolan16Santuza M. R. Teixeira17Hernán José Carrasco18Maria Elena Bottazzi19Peter J. Hotez20Kristy O. Murray21Mario J. Grijalva22Mario J. Grijalva23Barbara Burleigh24Edmundo C. Grisard25Michael A. Miles26Björn Andersson27Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SwedenEuropean Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United KingdomFaculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United KingdomFaculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United KingdomFaculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United KingdomDepartamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, BrazilDepartamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, BrazilDepartamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, BrazilDepartamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, PanamaDepartamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, PanamaGrupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, ColombiaGrupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, ColombiaCentro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, EcuadorCentro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador0Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States0Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States0Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States1Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil2Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela0Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States0Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States0Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United StatesCentro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador3Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States4Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States5Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, BrazilFaculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United KingdomDepartment of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SwedenTrypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.https://www.frontiersin.org/articles/10.3389/fcimb.2021.614665/fullTrypanosoma cruzigenome sequenceantigenic variationpopulation geneticsparasitologymicrobial genomics