Personalized Office Lighting for Circadian Health and Improved Sleep

<b>: </b>In modern society, the average person spends more than 90% of their time indoors. However, despite the growing scientific understanding of the impact of light on biological mechanisms, the existing light in the built environment is designed predominantly to meet visual performan...

Full description

Bibliographic Details
Main Authors: Charikleia Papatsimpa, Jean-Paul Linnartz
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/16/4569
id doaj-a4ceea4c17b145eaa731e9bbb6a64deb
record_format Article
spelling doaj-a4ceea4c17b145eaa731e9bbb6a64deb2020-11-25T03:42:15ZengMDPI AGSensors1424-82202020-08-01204569456910.3390/s20164569Personalized Office Lighting for Circadian Health and Improved SleepCharikleia Papatsimpa0Jean-Paul Linnartz1Electrical Engineering Department, Eindhoven University of Technology, 5600 MB Eindhoven, The NetherlandsSignify, 5656 AE Eindhoven, The Netherlands<b>: </b>In modern society, the average person spends more than 90% of their time indoors. However, despite the growing scientific understanding of the impact of light on biological mechanisms, the existing light in the built environment is designed predominantly to meet visual performance requirements only. Lighting can also be exploited as a means to improve occupant health and well-being through the circadian functions that regulate sleep, mood, and alertness. The benefits of well-lit spaces map across other regularly occupied building types, such as residences and schools, as well as patient rooms in healthcare and assisted-living facilities. Presently, Human Centric Lighting is being offered based on generic insights on population average experiences. In this paper, we suggest a personalized bio-adaptive office lighting system, controlled to emit a lighting recipe tailored to the individual employee. We introduce a new mathematical optimization for lighting schedules that align the 24-hour circadian cycle. Our algorithm estimates and optimizes parameters in experimentally validated models of the human circadian pacemaker. Moreover, it constrains deviations from the light levels desired and needed to perform daily activities. We further translate these into general principles for circadian lighting. We use experimentally validated models of the human circadian pacemaker to introduce a new algorithm to mathematically optimize lighting schedules to achieve circadian alignment to the 24-hour cycle, with constrained deviations from the light levels desired for daily activities. Our suggested optimization algorithm was able to translate our findings into general principles for circadian lighting. In particular, our simulation results reveal: (1) how energy constrains drive the shape of optimal lighting profiles by dimming the light levels in the time window that light is less biologically effective; (2) how inter-individual variations in the characteristic internal duration of the day shift the timing of optimal lighting exposure; (3) how user habits and, in particular, late-evening light exposure result in differentiation in late afternoon office lighting.https://www.mdpi.com/1424-8220/20/16/4569circadian lightcircadian clocksmart buildingsofficesleep
collection DOAJ
language English
format Article
sources DOAJ
author Charikleia Papatsimpa
Jean-Paul Linnartz
spellingShingle Charikleia Papatsimpa
Jean-Paul Linnartz
Personalized Office Lighting for Circadian Health and Improved Sleep
Sensors
circadian light
circadian clock
smart buildings
office
sleep
author_facet Charikleia Papatsimpa
Jean-Paul Linnartz
author_sort Charikleia Papatsimpa
title Personalized Office Lighting for Circadian Health and Improved Sleep
title_short Personalized Office Lighting for Circadian Health and Improved Sleep
title_full Personalized Office Lighting for Circadian Health and Improved Sleep
title_fullStr Personalized Office Lighting for Circadian Health and Improved Sleep
title_full_unstemmed Personalized Office Lighting for Circadian Health and Improved Sleep
title_sort personalized office lighting for circadian health and improved sleep
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2020-08-01
description <b>: </b>In modern society, the average person spends more than 90% of their time indoors. However, despite the growing scientific understanding of the impact of light on biological mechanisms, the existing light in the built environment is designed predominantly to meet visual performance requirements only. Lighting can also be exploited as a means to improve occupant health and well-being through the circadian functions that regulate sleep, mood, and alertness. The benefits of well-lit spaces map across other regularly occupied building types, such as residences and schools, as well as patient rooms in healthcare and assisted-living facilities. Presently, Human Centric Lighting is being offered based on generic insights on population average experiences. In this paper, we suggest a personalized bio-adaptive office lighting system, controlled to emit a lighting recipe tailored to the individual employee. We introduce a new mathematical optimization for lighting schedules that align the 24-hour circadian cycle. Our algorithm estimates and optimizes parameters in experimentally validated models of the human circadian pacemaker. Moreover, it constrains deviations from the light levels desired and needed to perform daily activities. We further translate these into general principles for circadian lighting. We use experimentally validated models of the human circadian pacemaker to introduce a new algorithm to mathematically optimize lighting schedules to achieve circadian alignment to the 24-hour cycle, with constrained deviations from the light levels desired for daily activities. Our suggested optimization algorithm was able to translate our findings into general principles for circadian lighting. In particular, our simulation results reveal: (1) how energy constrains drive the shape of optimal lighting profiles by dimming the light levels in the time window that light is less biologically effective; (2) how inter-individual variations in the characteristic internal duration of the day shift the timing of optimal lighting exposure; (3) how user habits and, in particular, late-evening light exposure result in differentiation in late afternoon office lighting.
topic circadian light
circadian clock
smart buildings
office
sleep
url https://www.mdpi.com/1424-8220/20/16/4569
work_keys_str_mv AT charikleiapapatsimpa personalizedofficelightingforcircadianhealthandimprovedsleep
AT jeanpaullinnartz personalizedofficelightingforcircadianhealthandimprovedsleep
_version_ 1724526243423977472