Finite Series of Distributional Solutions for Certain Linear Differential Equations
In this paper, we present the distributional solutions of the modified spherical Bessel differential equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/9/4/116 |
id |
doaj-a4e3d0bf0ff24c618d68ffd1d211daa3 |
---|---|
record_format |
Article |
spelling |
doaj-a4e3d0bf0ff24c618d68ffd1d211daa32020-11-25T03:55:10ZengMDPI AGAxioms2075-16802020-10-01911611610.3390/axioms9040116Finite Series of Distributional Solutions for Certain Linear Differential EquationsNipon Waiyaworn0Kamsing Nonlaopon1Somsak Orankitjaroen2Department of Mathematics, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, ThailandIn this paper, we present the distributional solutions of the modified spherical Bessel differential equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>[</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>ν</mi><mrow><mo>(</mo><mi>ν</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>]</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and the linear differential equations of the forms <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><msup><mi>ν</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math display="inline"><semantics><mrow><mi>ν</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. We find that the distributional solutions, in the form of a finite series of the Dirac delta function and its derivatives, depend on the values of <inline-formula><math display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>. The results of several examples are also presented.https://www.mdpi.com/2075-1680/9/4/116Dirac delta functiondistributional solutionLaplace transformpower series solution |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nipon Waiyaworn Kamsing Nonlaopon Somsak Orankitjaroen |
spellingShingle |
Nipon Waiyaworn Kamsing Nonlaopon Somsak Orankitjaroen Finite Series of Distributional Solutions for Certain Linear Differential Equations Axioms Dirac delta function distributional solution Laplace transform power series solution |
author_facet |
Nipon Waiyaworn Kamsing Nonlaopon Somsak Orankitjaroen |
author_sort |
Nipon Waiyaworn |
title |
Finite Series of Distributional Solutions for Certain Linear Differential Equations |
title_short |
Finite Series of Distributional Solutions for Certain Linear Differential Equations |
title_full |
Finite Series of Distributional Solutions for Certain Linear Differential Equations |
title_fullStr |
Finite Series of Distributional Solutions for Certain Linear Differential Equations |
title_full_unstemmed |
Finite Series of Distributional Solutions for Certain Linear Differential Equations |
title_sort |
finite series of distributional solutions for certain linear differential equations |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2020-10-01 |
description |
In this paper, we present the distributional solutions of the modified spherical Bessel differential equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>[</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>ν</mi><mrow><mo>(</mo><mi>ν</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>]</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and the linear differential equations of the forms <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><msup><mi>ν</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math display="inline"><semantics><mrow><mi>ν</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. We find that the distributional solutions, in the form of a finite series of the Dirac delta function and its derivatives, depend on the values of <inline-formula><math display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>. The results of several examples are also presented. |
topic |
Dirac delta function distributional solution Laplace transform power series solution |
url |
https://www.mdpi.com/2075-1680/9/4/116 |
work_keys_str_mv |
AT niponwaiyaworn finiteseriesofdistributionalsolutionsforcertainlineardifferentialequations AT kamsingnonlaopon finiteseriesofdistributionalsolutionsforcertainlineardifferentialequations AT somsakorankitjaroen finiteseriesofdistributionalsolutionsforcertainlineardifferentialequations |
_version_ |
1724470298209681408 |