Finite Series of Distributional Solutions for Certain Linear Differential Equations

In this paper, we present the distributional solutions of the modified spherical Bessel differential equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi...

Full description

Bibliographic Details
Main Authors: Nipon Waiyaworn, Kamsing Nonlaopon, Somsak Orankitjaroen
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/9/4/116
id doaj-a4e3d0bf0ff24c618d68ffd1d211daa3
record_format Article
spelling doaj-a4e3d0bf0ff24c618d68ffd1d211daa32020-11-25T03:55:10ZengMDPI AGAxioms2075-16802020-10-01911611610.3390/axioms9040116Finite Series of Distributional Solutions for Certain Linear Differential EquationsNipon Waiyaworn0Kamsing Nonlaopon1Somsak Orankitjaroen2Department of Mathematics, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, ThailandIn this paper, we present the distributional solutions of the modified spherical Bessel differential equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>[</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>ν</mi><mrow><mo>(</mo><mi>ν</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>]</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and the linear differential equations of the forms <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><msup><mi>ν</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math display="inline"><semantics><mrow><mi>ν</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. We find that the distributional solutions, in the form of a finite series of the Dirac delta function and its derivatives, depend on the values of <inline-formula><math display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>. The results of several examples are also presented.https://www.mdpi.com/2075-1680/9/4/116Dirac delta functiondistributional solutionLaplace transformpower series solution
collection DOAJ
language English
format Article
sources DOAJ
author Nipon Waiyaworn
Kamsing Nonlaopon
Somsak Orankitjaroen
spellingShingle Nipon Waiyaworn
Kamsing Nonlaopon
Somsak Orankitjaroen
Finite Series of Distributional Solutions for Certain Linear Differential Equations
Axioms
Dirac delta function
distributional solution
Laplace transform
power series solution
author_facet Nipon Waiyaworn
Kamsing Nonlaopon
Somsak Orankitjaroen
author_sort Nipon Waiyaworn
title Finite Series of Distributional Solutions for Certain Linear Differential Equations
title_short Finite Series of Distributional Solutions for Certain Linear Differential Equations
title_full Finite Series of Distributional Solutions for Certain Linear Differential Equations
title_fullStr Finite Series of Distributional Solutions for Certain Linear Differential Equations
title_full_unstemmed Finite Series of Distributional Solutions for Certain Linear Differential Equations
title_sort finite series of distributional solutions for certain linear differential equations
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2020-10-01
description In this paper, we present the distributional solutions of the modified spherical Bessel differential equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>[</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>ν</mi><mrow><mo>(</mo><mi>ν</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>]</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and the linear differential equations of the forms <inline-formula><math display="inline"><semantics><mrow><msup><mi>t</mi><mn>2</mn></msup><msup><mi>y</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mi>t</mi><msup><mi>y</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><msup><mi>ν</mi><mn>2</mn></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math display="inline"><semantics><mrow><mi>ν</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>. We find that the distributional solutions, in the form of a finite series of the Dirac delta function and its derivatives, depend on the values of <inline-formula><math display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula>. The results of several examples are also presented.
topic Dirac delta function
distributional solution
Laplace transform
power series solution
url https://www.mdpi.com/2075-1680/9/4/116
work_keys_str_mv AT niponwaiyaworn finiteseriesofdistributionalsolutionsforcertainlineardifferentialequations
AT kamsingnonlaopon finiteseriesofdistributionalsolutionsforcertainlineardifferentialequations
AT somsakorankitjaroen finiteseriesofdistributionalsolutionsforcertainlineardifferentialequations
_version_ 1724470298209681408