Combined Effects of Deformation and Undercooling on Isothermal Bainitic Transformation in an Fe-C-Mn-Si Alloy
Both ausforming and transformation temperature affect the successive bainitic transformation and microstructure. The individual influence of each case is clear, whereas the combined effects are still unknown. Thermomechanical simulation and metallography were used to investigate the combined effects...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-01-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/9/2/138 |
Summary: | Both ausforming and transformation temperature affect the successive bainitic transformation and microstructure. The individual influence of each case is clear, whereas the combined effects are still unknown. Thermomechanical simulation and metallography were used to investigate the combined effects of ausforming and transformation temperature on bainitic transformation and microstructure. The kinetics of isothermal bainitic transformation in non-deformed and deformed materials was analyzed. A lower transformation temperature can lead to more bainite formation without deformation. However, ausforming with small strains can partially compensate for the decrease of bainite amount caused by the decreased undercooling. The larger the applied strain is, the smaller the difference between the final amounts of bainite with different undercooling. Ausforming at a relatively higher temperature is more favorable to the acceleration of subsequent isothermal bainitic transformation. The results in the present work provide reference for optimizing the fabrication technology of medium-carbon nanobainite steels. |
---|---|
ISSN: | 2075-4701 |