Summary: | The prognosis of diffuse large B-cell lymphoma (DLBCL) is heterogeneous. Therefore, we aimed to highlight predictive biomarkers. First, artificial intelligence was applied into a discovery series of gene expression of 414 patients (GSE10846). A dimension reduction algorithm aimed to correlate with the overall survival and other clinicopathological variables; and included a combination of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) artificial neural networks, gene-set enrichment analysis (GSEA), Cox regression and other machine learning and predictive analytics modeling [C5.0 algorithm, logistic regression, Bayesian Network, discriminant analysis, random trees, tree-AS, Chi-squared Automatic Interaction Detection CHAID tree, Quest, classification and regression (C&R) tree and neural net)]. From an initial 54,613 gene-probes, a set of 488 genes and a final set of 16 genes were defined. Secondly, two identified markers of the immune checkpoint, PD-L1 (<i>CD274</i>) and IKAROS (<i>IKZF4</i>), were validated in an independent series from Tokai University, and the immunohistochemical expression was quantified, using a machine-learning-based Weka segmentation. High PD-L1 associated with poor overall and progression-free survival, non-GCB phenotype, Epstein–Barr virus infection (EBER+), high RGS1 expression and several clinicopathological variables, such as high IPI and absence of clinical response. Conversely, high expression of IKAROS was associated with a good overall and progression-free survival, GCB phenotype and a positive clinical response to treatment. Finally, the set of 16 genes (<i>PAF1, USP28, SORT1, MAP7D3, FITM2, CENPO, PRCC, ALDH6A1, CSNK2A1, TOR1AIP1, NUP98, UBE2H, UBXN7, SLC44A2, NR2C2AP</i> and <i>LETM1</i>), in combination with <i>PD-L1</i>, <i>IKAROS</i>, <i>BCL2</i>, <i>MYC</i>, <i>CD163</i> and <i>TNFAIP8</i>, predicted the survival outcome of DLBCL with an overall accuracy of 82.1%. In conclusion, building predictive models of DLBCL is a feasible analytical strategy.
|