High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings

Escherichia coli is reported in high levels in household soil in low-income settings. When E. coli reaches a soil environment, different mechanisms, including survival, clonal expansion, and genetic exchange, have the potential to either maintain or generate E. coli variants with capabilities of cau...

Full description

Bibliographic Details
Main Authors: Maria Camila Montealegre, Alba Talavera Rodríguez, Subarna Roy, Muhammed Iqbal Hossain, Mohammad Aminul Islam, Val F. Lanza, Timothy R. Julian
Format: Article
Language:English
Published: American Society for Microbiology 2020-01-01
Series:mSphere
Subjects:
Online Access:https://doi.org/10.1128/mSphere.00704-19
id doaj-a64db4c741f74883add2f5af88b09de0
record_format Article
spelling doaj-a64db4c741f74883add2f5af88b09de02020-11-25T02:20:14ZengAmerican Society for MicrobiologymSphere2379-50422020-01-0151e00704-1910.1128/mSphere.00704-19High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income SettingsMaria Camila MontealegreAlba Talavera RodríguezSubarna RoyMuhammed Iqbal HossainMohammad Aminul IslamVal F. LanzaTimothy R. JulianEscherichia coli is reported in high levels in household soil in low-income settings. When E. coli reaches a soil environment, different mechanisms, including survival, clonal expansion, and genetic exchange, have the potential to either maintain or generate E. coli variants with capabilities of causing harm to people. In this study, we used whole-genome sequencing to identify that E. coli isolates collected from rural Bangladeshi household soils, including pathogenic and antibiotic-resistant variants, are diverse and likely originated from multiple diverse sources. In addition, we observed specialization of the accessory genome of this Bangladeshi E. coli compared to E. coli genomes available in current sequence databases. Thus, to address the high level of pathogenic and antibiotic-resistant E. coli transmission in low-income settings, interventions should focus on addressing the heterogeneous origins and high diversity.Escherichia coli is present in multiple hosts and environmental compartments as a normal inhabitant, temporary or persistent colonizer, and as a pathogen. Transmission of E. coli between hosts and with the environment is considered to occur more often in areas with poor sanitation. We performed whole-genome comparative analyses on 60 E. coli isolates from soils and fecal sources (cattle, chickens, and humans) in households in rural Bangladesh. Isolates from household soils were in multiple branches of the reconstructed phylogeny, intermixed with isolates from fecal sources. Pairwise differences between all strain pairs were large (minimum, 189 single nucleotide polymorphisms [SNPs]), suggesting high diversity and heterogeneous origins of the isolates. The presence of multiple virulence and antibiotic resistance genes is indicative of the risk that E. coli from soil and feces represent for the transmission of variants that pose potential harm to people. Analysis of the accessory genomes of the Bangladeshi E. coli relative to E. coli genomes available in NCBI identified a common pool of accessory genes shared among E. coli isolates in this geographic area. Together, these findings indicate that in rural Bangladesh, a high level of E. coli in soil is likely driven by contributions from multiple and diverse E. coli sources (human and animal) that share an accessory gene pool relatively unique to previously published E. coli genomes. Thus, interventions to reduce environmental pathogen or antimicrobial resistance transmission should adopt integrated One Health approaches that consider heterogeneous origins and high diversity to improve effectiveness and reduce prevalence and transmission.https://doi.org/10.1128/mSphere.00704-19escherichia coligenomic diversityaccessory genessoilshousehold settings
collection DOAJ
language English
format Article
sources DOAJ
author Maria Camila Montealegre
Alba Talavera Rodríguez
Subarna Roy
Muhammed Iqbal Hossain
Mohammad Aminul Islam
Val F. Lanza
Timothy R. Julian
spellingShingle Maria Camila Montealegre
Alba Talavera Rodríguez
Subarna Roy
Muhammed Iqbal Hossain
Mohammad Aminul Islam
Val F. Lanza
Timothy R. Julian
High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings
mSphere
escherichia coli
genomic diversity
accessory genes
soils
household settings
author_facet Maria Camila Montealegre
Alba Talavera Rodríguez
Subarna Roy
Muhammed Iqbal Hossain
Mohammad Aminul Islam
Val F. Lanza
Timothy R. Julian
author_sort Maria Camila Montealegre
title High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings
title_short High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings
title_full High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings
title_fullStr High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings
title_full_unstemmed High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings
title_sort high genomic diversity and heterogenous origins of pathogenic and antibiotic-resistant escherichia coli in household settings represent a challenge to reducing transmission in low-income settings
publisher American Society for Microbiology
series mSphere
issn 2379-5042
publishDate 2020-01-01
description Escherichia coli is reported in high levels in household soil in low-income settings. When E. coli reaches a soil environment, different mechanisms, including survival, clonal expansion, and genetic exchange, have the potential to either maintain or generate E. coli variants with capabilities of causing harm to people. In this study, we used whole-genome sequencing to identify that E. coli isolates collected from rural Bangladeshi household soils, including pathogenic and antibiotic-resistant variants, are diverse and likely originated from multiple diverse sources. In addition, we observed specialization of the accessory genome of this Bangladeshi E. coli compared to E. coli genomes available in current sequence databases. Thus, to address the high level of pathogenic and antibiotic-resistant E. coli transmission in low-income settings, interventions should focus on addressing the heterogeneous origins and high diversity.Escherichia coli is present in multiple hosts and environmental compartments as a normal inhabitant, temporary or persistent colonizer, and as a pathogen. Transmission of E. coli between hosts and with the environment is considered to occur more often in areas with poor sanitation. We performed whole-genome comparative analyses on 60 E. coli isolates from soils and fecal sources (cattle, chickens, and humans) in households in rural Bangladesh. Isolates from household soils were in multiple branches of the reconstructed phylogeny, intermixed with isolates from fecal sources. Pairwise differences between all strain pairs were large (minimum, 189 single nucleotide polymorphisms [SNPs]), suggesting high diversity and heterogeneous origins of the isolates. The presence of multiple virulence and antibiotic resistance genes is indicative of the risk that E. coli from soil and feces represent for the transmission of variants that pose potential harm to people. Analysis of the accessory genomes of the Bangladeshi E. coli relative to E. coli genomes available in NCBI identified a common pool of accessory genes shared among E. coli isolates in this geographic area. Together, these findings indicate that in rural Bangladesh, a high level of E. coli in soil is likely driven by contributions from multiple and diverse E. coli sources (human and animal) that share an accessory gene pool relatively unique to previously published E. coli genomes. Thus, interventions to reduce environmental pathogen or antimicrobial resistance transmission should adopt integrated One Health approaches that consider heterogeneous origins and high diversity to improve effectiveness and reduce prevalence and transmission.
topic escherichia coli
genomic diversity
accessory genes
soils
household settings
url https://doi.org/10.1128/mSphere.00704-19
work_keys_str_mv AT mariacamilamontealegre highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
AT albatalaverarodriguez highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
AT subarnaroy highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
AT muhammediqbalhossain highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
AT mohammadaminulislam highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
AT valflanza highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
AT timothyrjulian highgenomicdiversityandheterogenousoriginsofpathogenicandantibioticresistantescherichiacoliinhouseholdsettingsrepresentachallengetoreducingtransmissioninlowincomesettings
_version_ 1715510234486669312