Unification of flavor, CP, and modular symmetries

Flavor symmetry plays a crucial role in the standard model of particle physics but its origin is still unknown. We develop a new method (based on outer automorphisms of the Narain space group) to determine flavor symmetries within compactified string theory. A picture emerges where traditional (disc...

Full description

Bibliographic Details
Main Authors: Alexander Baur, Hans Peter Nilles, Andreas Trautner, Patrick K.S. Vaudrevange
Format: Article
Language:English
Published: Elsevier 2019-08-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269319303600
Description
Summary:Flavor symmetry plays a crucial role in the standard model of particle physics but its origin is still unknown. We develop a new method (based on outer automorphisms of the Narain space group) to determine flavor symmetries within compactified string theory. A picture emerges where traditional (discrete) flavor symmetries, CP -like symmetries and modular symmetries (like T-duality) of string theory combine to unified flavor symmetries. The groups depend on the geometry of compact space and the geographical location of fields in the extra dimensions. We observe a phenomenon of “local flavor groups” with potentially different flavor symmetries for the various sectors of quarks and leptons. This should allow interesting connections to existing bottom-up attempts in flavor model building.
ISSN:0370-2693