Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio
Osteoblast differentiation is important for the development of bone and the maintenance of bone density. <i>Propionibacterium freudenreichii</i> is a probiotic with an anti-inflammatory property. The aim of this study was to investigate the enhancement effect of <i>P. freudenreichi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/9/4/673 |
id |
doaj-a71376d8cabc4d52a3d667f27c650820 |
---|---|
record_format |
Article |
spelling |
doaj-a71376d8cabc4d52a3d667f27c6508202021-03-25T00:05:41ZengMDPI AGMicroorganisms2076-26072021-03-01967367310.3390/microorganisms9040673Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL RatioJiah Yeom0Seongho Ma1Young-Hee Lim2Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, KoreaDepartment of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, KoreaDepartment of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, KoreaOsteoblast differentiation is important for the development of bone and the maintenance of bone density. <i>Propionibacterium freudenreichii</i> is a probiotic with an anti-inflammatory property. The aim of this study was to investigate the enhancement effect of <i>P. freudenreichii</i> MJ2 (MJ2) isolated from raw milk on osteoblast differentiation, mineralization, and its signaling pathway. For in vitro and in vivo experiments, human fetal osteoblastic cell line hFOB 1.19 and an ovariectomized rat model were used, respectively. Expression levels of genes and proteins related to osteoblast differentiation and mineralization were measured by real-time polymerase chain reaction (qPCR) and Western blotting, respectively. Alizarin red S staining was performed to measure osteoblast mineralization. Heat-killed MJ2 (hkMJ2)-treated cells showed significantly increased osteoblast differentiation via an increase in the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) ratio and significantly increased osteoblast mineralization by stimulating the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, oral administration of live or heat-killed MJ2 to ovariectomized rats inhibited osteoporosis-induced bone loss. Specifically, surface proteins isolated from MJ2 promoted osteoblast differentiation and mineralization. In conclusion, MJ2 enhanced osteoblast differentiation and mineralization through the OPG/RANKL signaling pathway and the effective component of MJ2 might be its surface proteins.https://www.mdpi.com/2076-2607/9/4/673<i>Propionibacterium freudenreichii</i>osteoblast mineralizationosteoprotegerinreceptor activator of nuclear factor-κB ligandsurface proteins |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiah Yeom Seongho Ma Young-Hee Lim |
spellingShingle |
Jiah Yeom Seongho Ma Young-Hee Lim Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio Microorganisms <i>Propionibacterium freudenreichii</i> osteoblast mineralization osteoprotegerin receptor activator of nuclear factor-κB ligand surface proteins |
author_facet |
Jiah Yeom Seongho Ma Young-Hee Lim |
author_sort |
Jiah Yeom |
title |
Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio |
title_short |
Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio |
title_full |
Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio |
title_fullStr |
Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio |
title_full_unstemmed |
Probiotic <i>Propionibacterium freudenreichii</i> MJ2 Enhances Osteoblast Differentiation and Mineralization by Increasing the OPG/RANKL Ratio |
title_sort |
probiotic <i>propionibacterium freudenreichii</i> mj2 enhances osteoblast differentiation and mineralization by increasing the opg/rankl ratio |
publisher |
MDPI AG |
series |
Microorganisms |
issn |
2076-2607 |
publishDate |
2021-03-01 |
description |
Osteoblast differentiation is important for the development of bone and the maintenance of bone density. <i>Propionibacterium freudenreichii</i> is a probiotic with an anti-inflammatory property. The aim of this study was to investigate the enhancement effect of <i>P. freudenreichii</i> MJ2 (MJ2) isolated from raw milk on osteoblast differentiation, mineralization, and its signaling pathway. For in vitro and in vivo experiments, human fetal osteoblastic cell line hFOB 1.19 and an ovariectomized rat model were used, respectively. Expression levels of genes and proteins related to osteoblast differentiation and mineralization were measured by real-time polymerase chain reaction (qPCR) and Western blotting, respectively. Alizarin red S staining was performed to measure osteoblast mineralization. Heat-killed MJ2 (hkMJ2)-treated cells showed significantly increased osteoblast differentiation via an increase in the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) ratio and significantly increased osteoblast mineralization by stimulating the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, oral administration of live or heat-killed MJ2 to ovariectomized rats inhibited osteoporosis-induced bone loss. Specifically, surface proteins isolated from MJ2 promoted osteoblast differentiation and mineralization. In conclusion, MJ2 enhanced osteoblast differentiation and mineralization through the OPG/RANKL signaling pathway and the effective component of MJ2 might be its surface proteins. |
topic |
<i>Propionibacterium freudenreichii</i> osteoblast mineralization osteoprotegerin receptor activator of nuclear factor-κB ligand surface proteins |
url |
https://www.mdpi.com/2076-2607/9/4/673 |
work_keys_str_mv |
AT jiahyeom probioticipropionibacteriumfreudenreichiiimj2enhancesosteoblastdifferentiationandmineralizationbyincreasingtheopgranklratio AT seonghoma probioticipropionibacteriumfreudenreichiiimj2enhancesosteoblastdifferentiationandmineralizationbyincreasingtheopgranklratio AT youngheelim probioticipropionibacteriumfreudenreichiiimj2enhancesosteoblastdifferentiationandmineralizationbyincreasingtheopgranklratio |
_version_ |
1724204112993583104 |