Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model
Multipotent mesenchymal stromal cells (MSCs) have gained tremendous attention as potential therapeutic agents for the treatment of orthopedic diseases. Promising results have been obtained after application of MSCs for treatment of tendon and joint disease in the equine model, making it appear favor...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2016-01-01
|
Series: | Cell Transplantation |
Online Access: | https://doi.org/10.3727/096368915X687822 |
id |
doaj-a7586eb23ff84c4e9d75d97910fde86a |
---|---|
record_format |
Article |
spelling |
doaj-a7586eb23ff84c4e9d75d97910fde86a2020-11-25T03:41:16ZengSAGE PublishingCell Transplantation0963-68971555-38922016-01-012510.3727/096368915X687822Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine ModelAline Hillmann0Annette B. Ahrberg1Walter Brehm2Sandra Heller3Christoph Josten4Felicitas Paebst5Janina Burk6Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, GermanyDepartment of Orthopedics, Traumatology and Plastic Surgery, University of Leipzig, Leipzig, GermanyLarge Animal Clinic for Surgery, University of Leipzig, Leipzig, GermanyTulane University, Department of Pathology and Laboratory Medicine, New Orleans, LA, USADepartment of Orthopedics, Traumatology and Plastic Surgery, University of Leipzig, Leipzig, GermanyLarge Animal Clinic for Surgery, University of Leipzig, Leipzig, GermanyInstitute of Veterinary Physiology, University of Leipzig, Leipzig, GermanyMultipotent mesenchymal stromal cells (MSCs) have gained tremendous attention as potential therapeutic agents for the treatment of orthopedic diseases. Promising results have been obtained after application of MSCs for treatment of tendon and joint disease in the equine model, making it appear favorable to use these results as a basis for the translational process of the therapy. However, while the horse is considered a highly suitable model for orthopedic diseases, knowledge is lacking regarding the level of analogy of equine MSCs and their human counterparts. Therefore, the aim of this study was to assess the properties of human and equine adipose-and tendon-derived MSCs in a direct comparison. Basic properties of human and equine MSCs from both tissues were similar. The cells expressed CD29, CD44, CD90, and CD105 and lacked expression of CD73, CD14, CD34, CD45, CD79a, and MCHII/HLA-DR. No significant differences were found between proliferation potential of human and equine MSCs in early passages, but recovery of nucleated cells after tissue digestion as well as proliferation in later passages was higher in equine samples (p < 0.01). All samples showed a good migration capacity and multilineage differentiation potential. However, while osteogenic differentiation was achieved in all equine samples, it was only evident in five out of nine human tendon-derived samples. Human MSCs further showed a higher expression of collagen IIIA1 and tenascin-C, but lower expression of decorin and scleraxis (p < 0.01). Although revealing some potentially relevant differences, the study demonstrates a high level of analogy between human and equine MSCs, providing a basis for translational research in the equine model according to the guidelines issued by the authorities.https://doi.org/10.3727/096368915X687822 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aline Hillmann Annette B. Ahrberg Walter Brehm Sandra Heller Christoph Josten Felicitas Paebst Janina Burk |
spellingShingle |
Aline Hillmann Annette B. Ahrberg Walter Brehm Sandra Heller Christoph Josten Felicitas Paebst Janina Burk Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model Cell Transplantation |
author_facet |
Aline Hillmann Annette B. Ahrberg Walter Brehm Sandra Heller Christoph Josten Felicitas Paebst Janina Burk |
author_sort |
Aline Hillmann |
title |
Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model |
title_short |
Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model |
title_full |
Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model |
title_fullStr |
Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model |
title_full_unstemmed |
Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model |
title_sort |
comparative characterization of human and equine mesenchymal stromal cells: a basis for translational studies in the equine model |
publisher |
SAGE Publishing |
series |
Cell Transplantation |
issn |
0963-6897 1555-3892 |
publishDate |
2016-01-01 |
description |
Multipotent mesenchymal stromal cells (MSCs) have gained tremendous attention as potential therapeutic agents for the treatment of orthopedic diseases. Promising results have been obtained after application of MSCs for treatment of tendon and joint disease in the equine model, making it appear favorable to use these results as a basis for the translational process of the therapy. However, while the horse is considered a highly suitable model for orthopedic diseases, knowledge is lacking regarding the level of analogy of equine MSCs and their human counterparts. Therefore, the aim of this study was to assess the properties of human and equine adipose-and tendon-derived MSCs in a direct comparison. Basic properties of human and equine MSCs from both tissues were similar. The cells expressed CD29, CD44, CD90, and CD105 and lacked expression of CD73, CD14, CD34, CD45, CD79a, and MCHII/HLA-DR. No significant differences were found between proliferation potential of human and equine MSCs in early passages, but recovery of nucleated cells after tissue digestion as well as proliferation in later passages was higher in equine samples (p < 0.01). All samples showed a good migration capacity and multilineage differentiation potential. However, while osteogenic differentiation was achieved in all equine samples, it was only evident in five out of nine human tendon-derived samples. Human MSCs further showed a higher expression of collagen IIIA1 and tenascin-C, but lower expression of decorin and scleraxis (p < 0.01). Although revealing some potentially relevant differences, the study demonstrates a high level of analogy between human and equine MSCs, providing a basis for translational research in the equine model according to the guidelines issued by the authorities. |
url |
https://doi.org/10.3727/096368915X687822 |
work_keys_str_mv |
AT alinehillmann comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel AT annettebahrberg comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel AT walterbrehm comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel AT sandraheller comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel AT christophjosten comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel AT felicitaspaebst comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel AT janinaburk comparativecharacterizationofhumanandequinemesenchymalstromalcellsabasisfortranslationalstudiesintheequinemodel |
_version_ |
1724530740783218688 |