On stable solutions of the weighted Lane-Emden equation involving Grushin operator

In this article, we study the weighted Lane-Emden equationwhere $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_...

Full description

Bibliographic Details
Main Authors: Yunfeng Wei, Hongwei Yang, Hongwang Yu
Format: Article
Language:English
Published: AIMS Press 2021-01-01
Series:AIMS Mathematics
Subjects:
Online Access:http://awstest.aimspress.com/article/doi/10.3934/math.2021159?viewType=HTML
id doaj-a7d31a41adfc46c2af75bdee9d07d91d
record_format Article
spelling doaj-a7d31a41adfc46c2af75bdee9d07d91d2021-01-12T01:37:37ZengAIMS PressAIMS Mathematics2473-69882021-01-01632623263510.3934/math.2021159On stable solutions of the weighted Lane-Emden equation involving Grushin operatorYunfeng Wei0Hongwei Yang1Hongwang Yu21. School of Statistics and Mathematics, Nanjing Audit University, Nanjing, 211815, P. R. China2. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, P. R. China1. School of Statistics and Mathematics, Nanjing Audit University, Nanjing, 211815, P. R. ChinaIn this article, we study the weighted Lane-Emden equationwhere $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.http://awstest.aimspress.com/article/doi/10.3934/math.2021159?viewType=HTMLstable weak solutionsliouville-type theoremgrushin operatorlane-emden nonlinearity
collection DOAJ
language English
format Article
sources DOAJ
author Yunfeng Wei
Hongwei Yang
Hongwang Yu
spellingShingle Yunfeng Wei
Hongwei Yang
Hongwang Yu
On stable solutions of the weighted Lane-Emden equation involving Grushin operator
AIMS Mathematics
stable weak solutions
liouville-type theorem
grushin operator
lane-emden nonlinearity
author_facet Yunfeng Wei
Hongwei Yang
Hongwang Yu
author_sort Yunfeng Wei
title On stable solutions of the weighted Lane-Emden equation involving Grushin operator
title_short On stable solutions of the weighted Lane-Emden equation involving Grushin operator
title_full On stable solutions of the weighted Lane-Emden equation involving Grushin operator
title_fullStr On stable solutions of the weighted Lane-Emden equation involving Grushin operator
title_full_unstemmed On stable solutions of the weighted Lane-Emden equation involving Grushin operator
title_sort on stable solutions of the weighted lane-emden equation involving grushin operator
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2021-01-01
description In this article, we study the weighted Lane-Emden equationwhere $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.
topic stable weak solutions
liouville-type theorem
grushin operator
lane-emden nonlinearity
url http://awstest.aimspress.com/article/doi/10.3934/math.2021159?viewType=HTML
work_keys_str_mv AT yunfengwei onstablesolutionsoftheweightedlaneemdenequationinvolvinggrushinoperator
AT hongweiyang onstablesolutionsoftheweightedlaneemdenequationinvolvinggrushinoperator
AT hongwangyu onstablesolutionsoftheweightedlaneemdenequationinvolvinggrushinoperator
_version_ 1724340925955571712