First-Row-Transition Ion Metals(II)-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA), as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs) was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [...

Full description

Bibliographic Details
Main Authors: Nuno M. R. Martins, Luísa M. D. R. S. Martins, Carlos O. Amorim, Vitor S. Amaral, Armando J. L. Pombeiro
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/7/11/335
Description
Summary:A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA), as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs) was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1), Fe2+ (2), Co2+ (3), Ni2+ (4), Cu2+ (5) or Zn2+ (6)] were characterized by FTIR (Fourier Transform Infrared) spectroscopy, powder XRD (X-ray Diffraction), SEM (Scanning Electron Microscope), EDS (Energy Dispersive Spectrometer), VSM (Vibrating Sample Magnetometer) and TGA (Thermal Gravity Analysis). The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.
ISSN:2073-4344