The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations

<p>Water vapor (H<span class="inline-formula"><sub>2</sub></span>O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO), being formed by CO<span class="inline-formula"><sub>2</sub><...

Full description

Bibliographic Details
Main Authors: A. Karagodin-Doyennel, E. Rozanov, A. Kuchar, W. Ball, P. Arsenovic, E. Remsberg, P. Jöckel, M. Kunze, D. A. Plummer, A. Stenke, D. Marsh, D. Kinnison, T. Peter
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/201/2021/acp-21-201-2021.pdf
id doaj-a89e615df1b0499bba9f37c8c7aa71e1
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author A. Karagodin-Doyennel
A. Karagodin-Doyennel
E. Rozanov
E. Rozanov
A. Kuchar
W. Ball
P. Arsenovic
E. Remsberg
P. Jöckel
M. Kunze
D. A. Plummer
A. Stenke
D. Marsh
D. Marsh
D. Kinnison
T. Peter
spellingShingle A. Karagodin-Doyennel
A. Karagodin-Doyennel
E. Rozanov
E. Rozanov
A. Kuchar
W. Ball
P. Arsenovic
E. Remsberg
P. Jöckel
M. Kunze
D. A. Plummer
A. Stenke
D. Marsh
D. Marsh
D. Kinnison
T. Peter
The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations
Atmospheric Chemistry and Physics
author_facet A. Karagodin-Doyennel
A. Karagodin-Doyennel
E. Rozanov
E. Rozanov
A. Kuchar
W. Ball
P. Arsenovic
E. Remsberg
P. Jöckel
M. Kunze
D. A. Plummer
A. Stenke
D. Marsh
D. Marsh
D. Kinnison
T. Peter
author_sort A. Karagodin-Doyennel
title The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations
title_short The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations
title_full The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations
title_fullStr The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations
title_full_unstemmed The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observations
title_sort response of mesospheric h<sub>2</sub>o and co to solar irradiance variability in models and observations
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-01-01
description <p>Water vapor (H<span class="inline-formula"><sub>2</sub></span>O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO), being formed by CO<span class="inline-formula"><sub>2</sub></span> photolysis, is suitable as a dynamical tracer. In the mesosphere, both H<span class="inline-formula"><sub>2</sub></span>O and CO are sensitive to solar irradiance (SI) variability because of their destruction/production by solar radiation. This enables us to analyze the solar signal in both models and observed data. Here, we evaluate the mesospheric H<span class="inline-formula"><sub>2</sub></span>O and CO response to solar irradiance variability using the Chemistry-Climate Model Initiative (CCMI-1) simulations and satellite observations. We analyzed the results of four CCMI models (CMAM, EMAC-L90MA, SOCOLv3, and CESM1-WACCM 3.5) operated in CCMI reference simulation REF-C1SD in specified dynamics mode, covering the period from 1984–2017. Multiple linear regression analyses show a pronounced and statistically robust response of H<span class="inline-formula"><sub>2</sub></span>O and CO to solar irradiance variability and to the annual and semiannual cycles. For periods with available satellite data, we compared the simulated solar signal against satellite observations, namely the GOZCARDS composite for 1992–2017 for H<span class="inline-formula"><sub>2</sub></span>O and Aura/MLS measurements for 2005–2017 for CO. The model results generally agree with observations and reproduce an expected negative and positive correlation for H<span class="inline-formula"><sub>2</sub></span>O and CO, respectively, with solar irradiance. However, the magnitude of the response and patterns of the solar signal varies among the considered models, indicating differences in the applied chemical reaction and dynamical schemes, including the representation of photolyzes. We suggest that there is no dominating thermospheric influence of solar irradiance in CO, as reported in previous studies, because the response to solar variability is comparable with observations in both low-top and high-top models. We stress the importance of this work for improving our understanding of the current ability and limitations of state-of-the-art models to simulate a solar signal in the chemistry and dynamics of the middle atmosphere.</p>
url https://acp.copernicus.org/articles/21/201/2021/acp-21-201-2021.pdf
work_keys_str_mv AT akaragodindoyennel theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT akaragodindoyennel theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT erozanov theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT erozanov theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT akuchar theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT wball theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT parsenovic theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT eremsberg theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT pjockel theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT mkunze theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT daplummer theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT astenke theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT dmarsh theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT dmarsh theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT dkinnison theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT tpeter theresponseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT akaragodindoyennel responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT akaragodindoyennel responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT erozanov responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT erozanov responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT akuchar responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT wball responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT parsenovic responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT eremsberg responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT pjockel responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT mkunze responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT daplummer responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT astenke responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT dmarsh responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT dmarsh responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT dkinnison responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
AT tpeter responseofmesospherichsub2suboandcotosolarirradiancevariabilityinmodelsandobservations
_version_ 1724341352433451008
spelling doaj-a89e615df1b0499bba9f37c8c7aa71e12021-01-11T11:34:32ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-01-012120121610.5194/acp-21-201-2021The response of mesospheric H<sub>2</sub>O and CO to solar irradiance variability in models and observationsA. Karagodin-Doyennel0A. Karagodin-Doyennel1E. Rozanov2E. Rozanov3A. Kuchar4W. Ball5P. Arsenovic6E. Remsberg7P. Jöckel8M. Kunze9D. A. Plummer10A. Stenke11D. Marsh12D. Marsh13D. Kinnison14T. Peter15The Institute for Atmospheric and Climate Science (IAC), ETH Zurich, Zurich, SwitzerlandThe Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos, SwitzerlandThe Institute for Atmospheric and Climate Science (IAC), ETH Zurich, Zurich, SwitzerlandThe Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Davos, SwitzerlandFaculty of Physics and Earth Sciences, Leipzig Institute for Meteorology (LIM), Leipzig, GermanyDepartment of Geoscience and Remote Sensing, TU Delft, Delft, the NetherlandsSwiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf, SwitzerlandScience Directorate, NASA Langley Research Center, Hampton, Virginia, USAInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyInstitut für Meteorologie, Freie Universität Berlin, 12165 Berlin, GermanyClimate Research Division, Environment and Climate Change Canada, Montreal, CanadaThe Institute for Atmospheric and Climate Science (IAC), ETH Zurich, Zurich, SwitzerlandNational Center for Atmospheric Research, Boulder, Colorado, USAPriestley International Centre for Climate, University of Leeds, Leeds, UKNational Center for Atmospheric Research, Boulder, Colorado, USAThe Institute for Atmospheric and Climate Science (IAC), ETH Zurich, Zurich, Switzerland<p>Water vapor (H<span class="inline-formula"><sub>2</sub></span>O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO), being formed by CO<span class="inline-formula"><sub>2</sub></span> photolysis, is suitable as a dynamical tracer. In the mesosphere, both H<span class="inline-formula"><sub>2</sub></span>O and CO are sensitive to solar irradiance (SI) variability because of their destruction/production by solar radiation. This enables us to analyze the solar signal in both models and observed data. Here, we evaluate the mesospheric H<span class="inline-formula"><sub>2</sub></span>O and CO response to solar irradiance variability using the Chemistry-Climate Model Initiative (CCMI-1) simulations and satellite observations. We analyzed the results of four CCMI models (CMAM, EMAC-L90MA, SOCOLv3, and CESM1-WACCM 3.5) operated in CCMI reference simulation REF-C1SD in specified dynamics mode, covering the period from 1984–2017. Multiple linear regression analyses show a pronounced and statistically robust response of H<span class="inline-formula"><sub>2</sub></span>O and CO to solar irradiance variability and to the annual and semiannual cycles. For periods with available satellite data, we compared the simulated solar signal against satellite observations, namely the GOZCARDS composite for 1992–2017 for H<span class="inline-formula"><sub>2</sub></span>O and Aura/MLS measurements for 2005–2017 for CO. The model results generally agree with observations and reproduce an expected negative and positive correlation for H<span class="inline-formula"><sub>2</sub></span>O and CO, respectively, with solar irradiance. However, the magnitude of the response and patterns of the solar signal varies among the considered models, indicating differences in the applied chemical reaction and dynamical schemes, including the representation of photolyzes. We suggest that there is no dominating thermospheric influence of solar irradiance in CO, as reported in previous studies, because the response to solar variability is comparable with observations in both low-top and high-top models. We stress the importance of this work for improving our understanding of the current ability and limitations of state-of-the-art models to simulate a solar signal in the chemistry and dynamics of the middle atmosphere.</p>https://acp.copernicus.org/articles/21/201/2021/acp-21-201-2021.pdf