Separation Efficiency of Nagar Parker China Clay Using Two Inch Hydrocyclone

Performance efficiency of two inch hydrocyclone has been investigated, using the Nagar Parker china clay. Raw china clay was initially washed with tap water and -75 ?m size fraction was separated through wet sieving. Washed china clay of -75 ?m was used as feed sample in hydrocyclone tests. Solids c...

Full description

Bibliographic Details
Main Authors: Abdul Ghani Pathan, Muhammad Yakoob Behan, Muhammad Hashim Baloch
Format: Article
Language:English
Published: Mehran University of Engineering and Technology 2013-01-01
Series:Mehran University Research Journal of Engineering and Technology
Subjects:
Online Access:http://publications.muet.edu.pk/research_papers/pdf/pdf736.pdf
Description
Summary:Performance efficiency of two inch hydrocyclone has been investigated, using the Nagar Parker china clay. Raw china clay was initially washed with tap water and -75 ?m size fraction was separated through wet sieving. Washed china clay of -75 ?m was used as feed sample in hydrocyclone tests. Solids concentration in slurry was kept as 2.5%. 45 tests were conducted with different combinations of pressure, vortex finder and spigot. Three sizes of spigot viz. 3.2, 2.2 and 1.5mm and three sizes of vortex finder viz. 7.00, 5.5 and 3.00mm were used. Hydrocyclone rig was operated at five different pressures viz. 20, 30, 40, 50 and 60 psi in conjunction with various combinations of vortex finder and spigot. Laser light scattering technique was used for particle size analysis of O/F (Overflow) and U/F (Underflow) products. Separation efficiency of the hydrocyclone, for various combinations of Vortex Finder, Spigot and operating pressure, was determined for two size fractions, i.e. less than ten micron and less than twenty micron, present in O/F and U/F products. From the results it was concluded that the best separation efficiency of 2 inch hydrocyclone is achieved by using the vortex finder of 7.0mm size and spigot of 1.5mm size. It was also concluded that the separation efficiency of the hydrocyclone decreases by increasing the pressure.
ISSN:0254-7821
2413-7219