The Effect of Multiple Freeze–Thaw Cycles on the Microstructure and Quality of <i>Trachurus murphyi</i>

Temperature fluctuation in frozen food storage and distribution is the perpetual and core issue faced by the frozen food industry. Ice recrystallisation induced by temperature fluctuations under cold storage causes microstructural changes in fish products and irreversible damages to cells and tissue...

Full description

Bibliographic Details
Main Authors: Chunlin Hu, Jing Xie
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/10/6/1350
Description
Summary:Temperature fluctuation in frozen food storage and distribution is the perpetual and core issue faced by the frozen food industry. Ice recrystallisation induced by temperature fluctuations under cold storage causes microstructural changes in fish products and irreversible damages to cells and tissues, which lower the frozen fish quality in the food chain. This study is intended to explore how repeated freezing–thawing affected the microstructure and quality of <i>Trachurus murphyi</i> during its frozen storage. The results showed the consistency between the increase in ice crystal diameter, volume, and porosity in frozen fish and the increase in centrifugal loss (from 22.4% to 25.69%), cooking loss (from 22.32% to 25.19%), conductivity (from 15.28 Ms/cm to 15.70 Ms/cm), TVB-N (from 16.32 mg N/100 g to 19.94 mg N/100 g), K-value (from 3.73% to 7.07%), and amino acid composition. The muscle structure change observed by Fourier-Transform Infrared spectroscopy (FT-IR) showed that the content of α-helix reduced from 59.05% to 51.83%, while the β-sheet fraction grew from 15.44% to 17.11%, β-turns increased from 5.45% to 7.58%, and random coil from 20.06% to 23.49%. Moreover, muscular structure exhibited varying degrees of deterioration with increasing cycles of freezing and thawing as shown by scanning electron microscopy (SEM). We studied the muscular morphology, which included the measurement of porosities (%) of pore that increased (from 1.4% to 4.3%) and pore distribution, by X-ray computed tomography (uCT). The cycles of the freeze–thaw resulted in structural changes, which seemed to be closely associated with ultimate quality of frozen fish products.
ISSN:2304-8158