An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions

Abstract Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behavio...

Full description

Bibliographic Details
Main Authors: Myrthe M. van der Bruggen, Koen D. Reesink, Paul J. M. Spronck, Nicole Bitsch, Jeroen Hameleers, Remco T. A. Megens, Casper G. Schalkwijk, Tammo Delhaas, Bart Spronck
Format: Article
Language:English
Published: Nature Publishing Group 2021-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-81151-5
id doaj-a956891e68dd42f689599fab716dc97d
record_format Article
spelling doaj-a956891e68dd42f689599fab716dc97d2021-01-31T16:25:17ZengNature Publishing GroupScientific Reports2045-23222021-01-0111111510.1038/s41598-021-81151-5An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditionsMyrthe M. van der Bruggen0Koen D. Reesink1Paul J. M. Spronck2Nicole Bitsch3Jeroen Hameleers4Remco T. A. Megens5Casper G. Schalkwijk6Tammo Delhaas7Bart Spronck8Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht UniversityDepartment of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht UniversityInnovatest Europe BVMuroidean Facility, CARIM School for Cardiovascular Diseases, Maastricht UniversityDepartment of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht UniversityDepartment of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht UniversityDepartment of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht UniversityDepartment of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht UniversityAbstract Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λ z ) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (c ax = dF/dλ z ) were calculated at the in vivo value of λ z . Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p < 0.001); c ax increased with increasing pressure. We demonstrated the feasibility of ex vivo biomechanical characterisation of biaxially-loaded murine carotid arteries under pulsatile conditions, and quantified reproducibility allowing for well-powered future study design.https://doi.org/10.1038/s41598-021-81151-5
collection DOAJ
language English
format Article
sources DOAJ
author Myrthe M. van der Bruggen
Koen D. Reesink
Paul J. M. Spronck
Nicole Bitsch
Jeroen Hameleers
Remco T. A. Megens
Casper G. Schalkwijk
Tammo Delhaas
Bart Spronck
spellingShingle Myrthe M. van der Bruggen
Koen D. Reesink
Paul J. M. Spronck
Nicole Bitsch
Jeroen Hameleers
Remco T. A. Megens
Casper G. Schalkwijk
Tammo Delhaas
Bart Spronck
An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
Scientific Reports
author_facet Myrthe M. van der Bruggen
Koen D. Reesink
Paul J. M. Spronck
Nicole Bitsch
Jeroen Hameleers
Remco T. A. Megens
Casper G. Schalkwijk
Tammo Delhaas
Bart Spronck
author_sort Myrthe M. van der Bruggen
title An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
title_short An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
title_full An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
title_fullStr An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
title_full_unstemmed An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
title_sort integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2021-01-01
description Abstract Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λ z ) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (c ax = dF/dλ z ) were calculated at the in vivo value of λ z . Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p < 0.001); c ax increased with increasing pressure. We demonstrated the feasibility of ex vivo biomechanical characterisation of biaxially-loaded murine carotid arteries under pulsatile conditions, and quantified reproducibility allowing for well-powered future study design.
url https://doi.org/10.1038/s41598-021-81151-5
work_keys_str_mv AT myrthemvanderbruggen anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT koendreesink anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT pauljmspronck anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT nicolebitsch anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT jeroenhameleers anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT remcotamegens anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT caspergschalkwijk anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT tammodelhaas anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT bartspronck anintegratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT myrthemvanderbruggen integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT koendreesink integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT pauljmspronck integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT nicolebitsch integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT jeroenhameleers integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT remcotamegens integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT caspergschalkwijk integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT tammodelhaas integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
AT bartspronck integratedsetupforexvivocharacterisationofbiaxialmurinearterybiomechanicsunderpulsatileconditions
_version_ 1724316330080862208