On the existence of periodic oscillations for pendulum-type equations
We provide new sufficient conditions for the existence of T-periodic solutions for the ϕ-laplacian pendulum equation (ϕ(x′))′ + k x′ + a sin x = e(t), where e ∈ C͠T. Our main tool is a continuation theorem due to Capietto, Mawhin and Zanolin and we improve or complement previous results in the liter...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-05-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2020-0222 |
Summary: | We provide new sufficient conditions for the existence of T-periodic solutions for the ϕ-laplacian pendulum equation (ϕ(x′))′ + k x′ + a sin x = e(t), where e ∈ C͠T. Our main tool is a continuation theorem due to Capietto, Mawhin and Zanolin and we improve or complement previous results in the literature obtained in the framework of the classical, the relativistic and the curvature pendulum equations. |
---|---|
ISSN: | 2191-9496 2191-950X |