Path following method for AUV based on Q-Learning and RBF neural network
In the underwater docking process, the oscillation on AUV velocity brings extra challenge on AUV path following. A Q-learning based Sliding Mode Control (SMC) method to increase the path following performances is proposed. Firstly, AUV guidance law is designed to reduce the path following error. Hea...
Format: | Article |
---|---|
Language: | zho |
Published: |
The Northwestern Polytechnical University
2021-06-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/full_html/2021/03/jnwpu2021393p477/jnwpu2021393p477.html |
Summary: | In the underwater docking process, the oscillation on AUV velocity brings extra challenge on AUV path following. A Q-learning based Sliding Mode Control (SMC) method to increase the path following performances is proposed. Firstly, AUV guidance law is designed to reduce the path following error. Heading and depth sliding mode controllers are designed to track the guidance law. Then, according to AUV velocity, tracking error and the first derivative, the control parameters of SMC are optimized via Q-learning network. RBF neural network is built to accelerate the offline learning rate. Finally, numerical simulations are made to investigate the characteristics of the present method. Comparisons are made between the trained Q-learning based SMC and the traditional SMC. The results show the effectiveness of the present method. |
---|---|
ISSN: | 1000-2758 2609-7125 |