Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements genera...

Full description

Bibliographic Details
Main Authors: H. Nakajima, A. T. Stadler
Format: Article
Language:English
Published: Copernicus Publications 2006-01-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/10/715/2006/hess-10-715-2006.pdf
Description
Summary:Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40<i>g</i>, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.
ISSN:1027-5606
1607-7938