Favorable Marker Alleles for Panicle Exsertion Length in Rice (Oryza sativa L.) Mined by Association Mapping and the RSTEP-LRT Method

The panicle exsertion length (PEL) in rice (Oryza sativa L.) is an important trait for hybrid seed production. We investigated the PEL in a chromosome segment substitution line (CSSL) population consisting of 66 lines and a natural population composed of 540 varieties. In the CSSL population, a tota...

Full description

Bibliographic Details
Main Authors: Xiaojing Dang, Bingjie Fang, Xiangong Chen, Dalu Li, Ognigamal Sowadan, Zhiyao Dong, Erbao Liu, Dong She, Guocan Wu, Yinfeng Liang, Delin Hong
Format: Article
Language:English
Published: Frontiers Media S.A. 2017-12-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fpls.2017.02112/full
Description
Summary:The panicle exsertion length (PEL) in rice (Oryza sativa L.) is an important trait for hybrid seed production. We investigated the PEL in a chromosome segment substitution line (CSSL) population consisting of 66 lines and a natural population composed of 540 varieties. In the CSSL population, a total of seven QTLs for PEL were detected across two environments. The percentage of phenotypic variance explained (PVE) ranged from 10.22 to 50.18%, and the additive effect ranged from −1.77 to 6.47 cm. Among the seven QTLs, qPEL10.2 had the largest PVE, 44.05 and 50.18%, with an additive effect of 5.91 and 6.47 cm in 2015 and in 2016, respectively. In the natural population, 13 SSR marker loci were detected that were associated with PEL in all four environments, with the PVE ranging from 1.20 to 6.26%. Among the 13 loci, 7 were novel. The RM5746-170 bp allele had the largest phenotypic effect (5.11 cm), and the typical carrier variety was Qiaobinghuang. An RM5620-RM6100 region harboring the EUI2 locus on chromosome 10 was detected in both populations. The sequencing results showed that the accessions with a shorter PEL contained the A base, while the accessions with a longer PEL contained the G base at the 1,475 bp location of the EUI2 gene.
ISSN:1664-462X