Interpreting canopy development and physiology using a European phenology camera network at flux sites

Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. A...

Full description

Bibliographic Details
Main Authors: L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, J. Grace
Format: Article
Language:English
Published: Copernicus Publications 2015-10-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/12/5995/2015/bg-12-5995-2015.pdf
id doaj-aa21bea75205487fae64e11d3b839ef4
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author L. Wingate
J. Ogée
E. Cremonese
G. Filippa
T. Mizunuma
M. Migliavacca
C. Moisy
M. Wilkinson
C. Moureaux
G. Wohlfahrt
A. Hammerle
L. Hörtnagl
C. Gimeno
A. Porcar-Castell
M. Galvagno
T. Nakaji
J. Morison
O. Kolle
A. Knohl
W. Kutsch
P. Kolari
E. Nikinmaa
A. Ibrom
B. Gielen
W. Eugster
M. Balzarolo
D. Papale
K. Klumpp
B. Köstner
T. Grünwald
R. Joffre
J.-M. Ourcival
M. Hellstrom
A. Lindroth
C. George
B. Longdoz
B. Genty
J. Levula
B. Heinesch
M. Sprintsin
D. Yakir
T. Manise
D. Guyon
H. Ahrends
A. Plaza-Aguilar
J. H. Guan
J. Grace
spellingShingle L. Wingate
J. Ogée
E. Cremonese
G. Filippa
T. Mizunuma
M. Migliavacca
C. Moisy
M. Wilkinson
C. Moureaux
G. Wohlfahrt
A. Hammerle
L. Hörtnagl
C. Gimeno
A. Porcar-Castell
M. Galvagno
T. Nakaji
J. Morison
O. Kolle
A. Knohl
W. Kutsch
P. Kolari
E. Nikinmaa
A. Ibrom
B. Gielen
W. Eugster
M. Balzarolo
D. Papale
K. Klumpp
B. Köstner
T. Grünwald
R. Joffre
J.-M. Ourcival
M. Hellstrom
A. Lindroth
C. George
B. Longdoz
B. Genty
J. Levula
B. Heinesch
M. Sprintsin
D. Yakir
T. Manise
D. Guyon
H. Ahrends
A. Plaza-Aguilar
J. H. Guan
J. Grace
Interpreting canopy development and physiology using a European phenology camera network at flux sites
Biogeosciences
author_facet L. Wingate
J. Ogée
E. Cremonese
G. Filippa
T. Mizunuma
M. Migliavacca
C. Moisy
M. Wilkinson
C. Moureaux
G. Wohlfahrt
A. Hammerle
L. Hörtnagl
C. Gimeno
A. Porcar-Castell
M. Galvagno
T. Nakaji
J. Morison
O. Kolle
A. Knohl
W. Kutsch
P. Kolari
E. Nikinmaa
A. Ibrom
B. Gielen
W. Eugster
M. Balzarolo
D. Papale
K. Klumpp
B. Köstner
T. Grünwald
R. Joffre
J.-M. Ourcival
M. Hellstrom
A. Lindroth
C. George
B. Longdoz
B. Genty
J. Levula
B. Heinesch
M. Sprintsin
D. Yakir
T. Manise
D. Guyon
H. Ahrends
A. Plaza-Aguilar
J. H. Guan
J. Grace
author_sort L. Wingate
title Interpreting canopy development and physiology using a European phenology camera network at flux sites
title_short Interpreting canopy development and physiology using a European phenology camera network at flux sites
title_full Interpreting canopy development and physiology using a European phenology camera network at flux sites
title_fullStr Interpreting canopy development and physiology using a European phenology camera network at flux sites
title_full_unstemmed Interpreting canopy development and physiology using a European phenology camera network at flux sites
title_sort interpreting canopy development and physiology using a european phenology camera network at flux sites
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2015-10-01
description Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on towers across Europe above deciduous and evergreen forests, grasslands and croplands, where vegetation and atmosphere CO<sub>2</sub> fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time series, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing season, in addition to identifying striking changes in colour signals caused by flowering and management practices such as mowing. Exploring the dates of green-up and senescence of deciduous forests extracted by the piecewise regression approach against dates estimated from visual observations, we found that these phenological events could be detected adequately (RMSE < 8 and 11 days for leaf out and leaf fall, respectively). We also investigated whether the seasonal patterns of red, green and blue colour fractions derived from digital images could be modelled mechanistically using the PROSAIL model parameterised with information of seasonal changes in canopy leaf area and leaf chlorophyll and carotenoid concentrations. From a model sensitivity analysis we found that variations in colour fractions, and in particular the late spring `green hump' observed repeatedly in deciduous broadleaf canopies across the network, are essentially dominated by changes in the respective pigment concentrations. Using the model we were able to explain why this spring maximum in green signal is often observed out of phase with the maximum period of canopy photosynthesis in ecosystems across Europe. Coupling such quasi-continuous digital records of canopy colours with co-located CO<sub>2</sub> flux measurements will improve our understanding of how changes in growing season length are likely to shape the capacity of European ecosystems to sequester CO<sub>2</sub> in the future.
url http://www.biogeosciences.net/12/5995/2015/bg-12-5995-2015.pdf
work_keys_str_mv AT lwingate interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT jogee interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT ecremonese interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT gfilippa interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT tmizunuma interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT mmigliavacca interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT cmoisy interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT mwilkinson interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT cmoureaux interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT gwohlfahrt interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT ahammerle interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT lhortnagl interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT cgimeno interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT aporcarcastell interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT mgalvagno interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT tnakaji interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT jmorison interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT okolle interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT aknohl interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT wkutsch interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT pkolari interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT enikinmaa interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT aibrom interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT bgielen interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT weugster interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT mbalzarolo interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT dpapale interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT kklumpp interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT bkostner interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT tgrunwald interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT rjoffre interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT jmourcival interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT mhellstrom interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT alindroth interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT cgeorge interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT blongdoz interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT bgenty interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT jlevula interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT bheinesch interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT msprintsin interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT dyakir interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT tmanise interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT dguyon interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT hahrends interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT aplazaaguilar interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT jhguan interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
AT jgrace interpretingcanopydevelopmentandphysiologyusingaeuropeanphenologycameranetworkatfluxsites
_version_ 1725329130563567616
spelling doaj-aa21bea75205487fae64e11d3b839ef42020-11-25T00:29:54ZengCopernicus PublicationsBiogeosciences1726-41701726-41892015-10-0112205995601510.5194/bg-12-5995-2015Interpreting canopy development and physiology using a European phenology camera network at flux sitesL. Wingate0J. Ogée1E. Cremonese2G. Filippa3T. Mizunuma4M. Migliavacca5C. Moisy6M. Wilkinson7C. Moureaux8G. Wohlfahrt9A. Hammerle10L. Hörtnagl11C. Gimeno12A. Porcar-Castell13M. Galvagno14T. Nakaji15J. Morison16O. Kolle17A. Knohl18W. Kutsch19P. Kolari20E. Nikinmaa21A. Ibrom22B. Gielen23W. Eugster24M. Balzarolo25D. Papale26K. Klumpp27B. Köstner28T. Grünwald29R. Joffre30J.-M. Ourcival31M. Hellstrom32A. Lindroth33C. George34B. Longdoz35B. Genty36J. Levula37B. Heinesch38M. Sprintsin39D. Yakir40T. Manise41D. Guyon42H. Ahrends43A. Plaza-Aguilar44J. H. Guan45J. Grace46INRA, UMR ISPA 1391, 33140 Villenave d'Ornon, FranceINRA, UMR ISPA 1391, 33140 Villenave d'Ornon, FranceEnvironmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d'Aosta, ItalyEnvironmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d'Aosta, ItalySchool of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, UKMax Planck Institute for Biogeochemistry, Jena, GermanyINRA, UMR ISPA 1391, 33140 Villenave d'Ornon, FranceForest Research, Alice Holt, Farnham, GU10 4LH, UKUnité de Physique des Biosystemes, Gembloux Agro-Bio Tech, Université of Liège, 5030 Gembloux, BelgiumUniversity of Innsbruck, Institute of Ecology, Innsbruck, AustriaUniversity of Innsbruck, Institute of Ecology, Innsbruck, AustriaUniversity of Innsbruck, Institute of Ecology, Innsbruck, AustriaCentro de Estudios Ambientales del Mediterráneo, Paterna, SpainDepartment of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, FinlandEnvironmental Protection Agency of Aosta Valley, Climate Change Unit, ARPA Valle d'Aosta, ItalyUniversity of Hokkaido, Regional Resource Management Research, Hokkaido, JapanForest Research, Alice Holt, Farnham, GU10 4LH, UKMax Planck Institute for Biogeochemistry, Jena, GermanyGeorg-August University of Göttingen, Faculty of Forest Sciences and Forest Ecology, 37077 Göttingen, GermanyJohann Heinrich von Thünen-Institut (vTI) Institut für Agrarrelevante Klimaforschung, 38116, Braunschweig, GermanyDepartment of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, FinlandDepartment of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, FinlandRisø National Laboratory for Sustainable Energy, Risø DTU, 4000 Roskilde, DenmarkDepartment of Biology/Centre of Excellence PLECO, University of Antwerp, Antwerp, BelgiumETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, SwitzerlandDepartment of Biology/Centre of Excellence PLECO, University of Antwerp, Antwerp, BelgiumDepartment of Forest Environment and Resources, University of Tuscia, Viterbo, ItalyINRA, Grassland Ecosystem Research Unit, UR874, 63100 Clermont Ferrand, FranceChair of Meterorology, Technische Universität Dresden, Tharandt, GermanyChair of Meterorology, Technische Universität Dresden, Tharandt, GermanyCNRS, CEFE (UMR5175), Montpellier, FranceCNRS, CEFE (UMR5175), Montpellier, FranceDepartment of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, SwedenDepartment of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, SwedenCentre for Ecology and Hydrology, Wallingford, Oxford, UKINRA, UMR EEF (UMR1137) Nancy, FranceCEA, IBEB, SVBME, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, FranceDepartment of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, FinlandUnité de Physique des Biosystemes, Gembloux Agro-Bio Tech, Université of Liège, 5030 Gembloux, BelgiumForest Management and GIS Department, Jewish National Fund-Keren Kayemet LeIsrael, Eshtaol, M.P. Shimshon, 99775, IsraelWeizmann Institute for Science, Rehovot, IsraelUnité de Physique des Biosystemes, Gembloux Agro-Bio Tech, Université of Liège, 5030 Gembloux, BelgiumINRA, UMR ISPA 1391, 33140 Villenave d'Ornon, FranceETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, SwitzerlandUniversity of Cambridge, Plant Sciences, Cambridge, UKMax Planck Institute for Biogeochemistry, Jena, GermanySchool of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JN, UKPlant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on towers across Europe above deciduous and evergreen forests, grasslands and croplands, where vegetation and atmosphere CO<sub>2</sub> fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time series, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing season, in addition to identifying striking changes in colour signals caused by flowering and management practices such as mowing. Exploring the dates of green-up and senescence of deciduous forests extracted by the piecewise regression approach against dates estimated from visual observations, we found that these phenological events could be detected adequately (RMSE < 8 and 11 days for leaf out and leaf fall, respectively). We also investigated whether the seasonal patterns of red, green and blue colour fractions derived from digital images could be modelled mechanistically using the PROSAIL model parameterised with information of seasonal changes in canopy leaf area and leaf chlorophyll and carotenoid concentrations. From a model sensitivity analysis we found that variations in colour fractions, and in particular the late spring `green hump' observed repeatedly in deciduous broadleaf canopies across the network, are essentially dominated by changes in the respective pigment concentrations. Using the model we were able to explain why this spring maximum in green signal is often observed out of phase with the maximum period of canopy photosynthesis in ecosystems across Europe. Coupling such quasi-continuous digital records of canopy colours with co-located CO<sub>2</sub> flux measurements will improve our understanding of how changes in growing season length are likely to shape the capacity of European ecosystems to sequester CO<sub>2</sub> in the future.http://www.biogeosciences.net/12/5995/2015/bg-12-5995-2015.pdf