Accumulation and Tissue Distribution of Dinophysitoxin-1 and Dinophysitoxin-3 in the Mussel Crenomytilus grayanus Feeding on the Benthic Dinoflagellate Prorocentrum foraminosum

A DTX-1-producing microalga, Prorocentrum foraminosum, from Peter the Great Bay, Sea of Japan, was fed to Gray’s mussels, Crenomytilus grayanus, for 12 days. An increase in DTX-1 and 7-O-acyl-DTX-1 (DTX-3) was observed in the digestive gland, kidneys, and gills. The digestive gland accumulated 91–10...

Full description

Bibliographic Details
Main Authors: Polina A. Kameneva, Ekaterina A. Krasheninina, Valentina V. Slobodskova, Sergey P. Kukla, Tatiana Yu. Orlova
Format: Article
Language:English
Published: MDPI AG 2017-10-01
Series:Marine Drugs
Subjects:
Online Access:https://www.mdpi.com/1660-3397/15/10/330
Description
Summary:A DTX-1-producing microalga, Prorocentrum foraminosum, from Peter the Great Bay, Sea of Japan, was fed to Gray’s mussels, Crenomytilus grayanus, for 12 days. An increase in DTX-1 and 7-O-acyl-DTX-1 (DTX-3) was observed in the digestive gland, kidneys, and gills. The digestive gland accumulated 91–100% of DTX-1 + DTX-3; and kidneys and gills accumulated, up to 8.5% and 4.3%, respectively. The kidneys had a distinctive pattern of toxin accumulation where the concentration of DTX-1 did not grow significantly after the eighth day of feeding, indicating the potential of DTX-1 elimination. The digestive gland and gills predominantly accumulated DTX-1, with a dramatic increase between Days 8 and 12. The DTX-3 content was highest in the digestive gland. The composition of DTX-3 in the acyl groups was similar for the digestive gland and kidneys, and did not change during feeding. The total toxin uptake of mussels exceeded the total toxin content from ingested cells by 2.4 times, showing that toxins may have accumulated from the seawater. This assumption needs to be further proved. The muscle, gonads, and mantle remained free of toxins. No genotoxic effect was observed in the gills and digestive gland.
ISSN:1660-3397