DNA origami based superconducting nanowires

Utilizing self-assembled DNA structures in the development of nanoelectronic circuits requires transforming the DNA strands into highly conducting wires. Toward this end, we investigate the use of DNA self-assembled nanowires as templates for the deposition of a superconducting material. Nanowires f...

Full description

Bibliographic Details
Main Authors: Lior Shani, Philip Tinnefeld, Yafit Fleger, Amos Sharoni, Boris Ya. Shapiro, Avner Shaulov, Oleg Gang, Yosef Yeshurun
Format: Article
Language:English
Published: AIP Publishing LLC 2021-01-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0029781
Description
Summary:Utilizing self-assembled DNA structures in the development of nanoelectronic circuits requires transforming the DNA strands into highly conducting wires. Toward this end, we investigate the use of DNA self-assembled nanowires as templates for the deposition of a superconducting material. Nanowires formed by the deposition of superconducting NbN exhibit thermally activated and quantum phase slips as well as exceptionally large negative magnetoresistance. The latter effect can be utilized to suppress a significant part of the low temperature resistance caused by the quantum phase slips.
ISSN:2158-3226