Copper Dissolution from Black Copper Ore under Oxidizing and Reducing Conditions

Black copper oxides are amorphous materials of copper-bearing phases of manganese. They are complex mineral compounds with difficult to recognize mineralogy and have slow dissolution kinetics in conventional hydrometallurgical processes. This study evaluates the effects of various leaching media on...

Full description

Bibliographic Details
Main Authors: Oscar Benavente, María Cecilia Hernández, Evelyn Melo, Damián Núñez, Víctor Quezada, Yuri Zepeda
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/9/7/799
Description
Summary:Black copper oxides are amorphous materials of copper-bearing phases of manganese. They are complex mineral compounds with difficult to recognize mineralogy and have slow dissolution kinetics in conventional hydrometallurgical processes. This study evaluates the effects of various leaching media on copper dissolution from black copper minerals. Leach of a pure black copper sample from Lomas Bayas Mine and another from a regional mine were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), Qemscan and mechanically prepared for acid leaching under standard, oxidizing and reducing conditions through the addition of oxygen, iron sulfate or sulfur dioxide, respectively. Standard and high potential leaching (770 mV (SHE)) results in a copper dissolution rate of 70% and manganese dissolution rate of 2%. The addition of potential reducing agents (FeSO<sub>4</sub> or SO<sub>2</sub>) decreases the redox potential to 696 and 431 mV, respectively, and favors the dissolution of manganese, thus increasing the overall copper extraction rate. The addition of SO<sub>2</sub> results in the lowest redox potential and the highest copper extraction rates of 86.2% and 75.5% for the Lomas Bayas and regional samples, respectively, which represent an increase of 15% over the copper extract rates under standard and oxidizing conditions.
ISSN:2075-4701